A survey on label-efficient deep image segmentation: Bridging the gap between weak supervision and dense prediction

W Shen, Z Peng, X Wang, H Wang… - IEEE transactions on …, 2023 - ieeexplore.ieee.org
The rapid development of deep learning has made a great progress in image segmentation,
one of the fundamental tasks of computer vision. However, the current segmentation …

A comprehensive survey on segment anything model for vision and beyond

C Zhang, L Liu, Y Cui, G Huang, W Lin, Y Yang… - arxiv preprint arxiv …, 2023 - arxiv.org
Artificial intelligence (AI) is evolving towards artificial general intelligence, which refers to the
ability of an AI system to perform a wide range of tasks and exhibit a level of intelligence …

Diffumask: Synthesizing images with pixel-level annotations for semantic segmentation using diffusion models

W Wu, Y Zhao, MZ Shou, H Zhou… - Proceedings of the …, 2023 - openaccess.thecvf.com
Collecting and annotating images with pixel-wise labels is time-consuming and laborious. In
contrast, synthetic data can be freely available using a generative model (eg, DALL-E …

Token contrast for weakly-supervised semantic segmentation

L Ru, H Zheng, Y Zhan, B Du - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Abstract Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels
typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the …

Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers

L Ru, Y Zhan, B Yu, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …

Regional semantic contrast and aggregation for weakly supervised semantic segmentation

T Zhou, M Zhang, F Zhao, J Li - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Learning semantic segmentation from weakly-labeled (eg, image tags only) data is
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …

Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation

Q Chen, L Yang, JH Lai, X **e - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Abstract Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels
has attracted much attention due to low annotation costs. Existing methods often rely on …

Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation

J Lee, E Kim, S Yoon - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Weakly supervised semantic segmentation produces a pixel-level localization from class
labels; but a classifier trained on such labels is likely to restrict its focus to a small …

Reducing information bottleneck for weakly supervised semantic segmentation

J Lee, J Choi, J Mok, S Yoon - Advances in neural …, 2021 - proceedings.neurips.cc
Weakly supervised semantic segmentation produces pixel-level localization from class
labels; however, a classifier trained on such labels is likely to focus on a small discriminative …

Physical attack on monocular depth estimation with optimal adversarial patches

Z Cheng, J Liang, H Choi, G Tao, Z Cao, D Liu… - European conference on …, 2022 - Springer
Deep learning has substantially boosted the performance of Monocular Depth Estimation
(MDE), a critical component in fully vision-based autonomous driving (AD) systems (eg …