A survey on active learning and human-in-the-loop deep learning for medical image analysis

S Budd, EC Robinson, B Kainz - Medical image analysis, 2021 - Elsevier
Fully automatic deep learning has become the state-of-the-art technique for many tasks
including image acquisition, analysis and interpretation, and for the extraction of clinically …

[HTML][HTML] Deep learning based synthesis of MRI, CT and PET: Review and analysis

S Dayarathna, KT Islam, S Uribe, G Yang, M Hayat… - Medical image …, 2024 - Elsevier
Medical image synthesis represents a critical area of research in clinical decision-making,
aiming to overcome the challenges associated with acquiring multiple image modalities for …

ResViT: residual vision transformers for multimodal medical image synthesis

O Dalmaz, M Yurt, T Çukur - IEEE Transactions on Medical …, 2022 - ieeexplore.ieee.org
Generative adversarial models with convolutional neural network (CNN) backbones have
recently been established as state-of-the-art in numerous medical image synthesis tasks …

Unsupervised medical image translation with adversarial diffusion models

M Özbey, O Dalmaz, SUH Dar, HA Bedel… - … on Medical Imaging, 2023 - ieeexplore.ieee.org
Imputation of missing images via source-to-target modality translation can improve diversity
in medical imaging protocols. A pervasive approach for synthesizing target images involves …

On data augmentation for GAN training

NT Tran, VH Tran, NB Nguyen… - … on Image Processing, 2021 - ieeexplore.ieee.org
Recent successes in Generative Adversarial Networks (GAN) have affirmed the importance
of using more data in GAN training. Yet it is expensive to collect data in many domains such …

Hi-net: hybrid-fusion network for multi-modal MR image synthesis

T Zhou, H Fu, G Chen, J Shen… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Magnetic resonance imaging (MRI) is a widely used neuroimaging technique that can
provide images of different contrasts (ie, modalities). Fusing this multi-modal data has …

[HTML][HTML] Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation

K Chaitanya, E Erdil, N Karani, E Konukoglu - Medical image analysis, 2023 - Elsevier
Supervised deep learning-based methods yield accurate results for medical image
segmentation. However, they require large labeled datasets for this, and obtaining them is a …

Generative AI for brain image computing and brain network computing: a review

C Gong, C **g, X Chen, CM Pun, G Huang… - Frontiers in …, 2023 - frontiersin.org
Recent years have witnessed a significant advancement in brain imaging techniques that
offer a non-invasive approach to map** the structure and function of the brain …

Brain tumor diagnosis using machine learning, convolutional neural networks, capsule neural networks and vision transformers, applied to MRI: a survey

AA Akinyelu, F Zaccagna, JT Grist, M Castelli… - Journal of …, 2022 - mdpi.com
Management of brain tumors is based on clinical and radiological information with
presumed grade dictating treatment. Hence, a non-invasive assessment of tumor grade is of …

Expanding small-scale datasets with guided imagination

Y Zhang, D Zhou, B Hooi, K Wang… - Advances in neural …, 2023 - proceedings.neurips.cc
The power of DNNs relies heavily on the quantity and quality of training data. However,
collecting and annotating data on a large scale is often expensive and time-consuming. To …