[HTML][HTML] The advance of digital twin for predictive maintenance: The role and function of machine learning

C Chen, H Fu, Y Zheng, F Tao, Y Liu - Journal of Manufacturing Systems, 2023 - Elsevier
The recent advance of digital twin (DT) has greatly facilitated the development of predictive
maintenance (PdM). DT for PdM enables accurate equipment status recognition and …

[HTML][HTML] Single-and multi-task linear models for ATMs fault classification in human-centered predictive maintenance

R Rosati, L Romeo, A Mancini - Computers & Industrial Engineering, 2025 - Elsevier
The recirculator, a complex component within Automated Teller Machines (ATMs)
responsible for handling banknotes, poses a challenging task for fault diagnosis due to its …

ContextFlow++: Generalist-specialist flow-based generative models with mixed-variable context encoding

D Gudovskiy, T Okuno, Y Nakata - arxiv preprint arxiv:2406.00578, 2024 - arxiv.org
Normalizing flow-based generative models have been widely used in applications where
the exact density estimation is of major importance. Recent research proposes numerous …

Improving industrial question answering chatbots with domain-specific llms fine-tuning

R Rosati, F Antonini, N Muralikrishna… - 2024 20th IEEE …, 2024 - ieeexplore.ieee.org
The industrial landscape is experiencing a significant transformation and there is a growing
emphasis on human-machine collaboration, personalization, and sustainable …

A comprehensive ATM security framework for detecting abnormal human activity via granger causality-inspired graph neural network optimized with eagle-strategy …

AP Kshirsagar, H Azath - Expert Systems with Applications, 2025 - Elsevier
The daily increase of criminal activity has made real-time human activity detection crucial for
the protection & surveillance of public spaces, including bank-automated teller machines …

HybridCBAMNet: Enhancing time series binary classification with convolutional recurrent networks and attention mechanisms

ML Huang, YT Yang - Measurement, 2025 - Elsevier
The rapid advancement of Internet of Things technology and the increasing availability of big
data have resulted in an exponential growth of time series data, highlighting a pressing …

Advancing predictive maintenance: a deep learning approach to sensor and event-log data fusion

Z Liu, J Hui - Sensor Review, 2024 - emerald.com
Purpose This study aims to introduce an innovative approach to predictive maintenance by
integrating time-series sensor data with event logs, leveraging the synergistic potential of …

Computational intelligence-based approaches to fault-tolerant and self-healing control and maintenance of dynamic systems

M Witczak, V Puig, S Simani - 2023 - dl.acm.org
Computational intelligence-based approaches to fault-tolerant and self-healing control and
maintenance of dynamic systems | Engineering Applications of Artificial Intelligence skip to …

Операційні ризики, методи іх оцінки, запобігання та прогнозування

ВЮ Титаренко - 2024 - ela.kpi.ua
Анотація Магістерська дисертація: 134 с., 19 рис., 42 табл., 1 додаток, 43 джерела.
Мета роботи–розробка системи прогнозування операційних ризиків на основі методів …

Predictive Maintenance Planning Using a Hybrid ARIMA-ANN Model

G Kaynak, B Ervural - Bitlis Eren Üniversitesi Fen Bilimleri Dergisi - dergipark.org.tr
Predicting machine faults is crucial for maintaining operational efficiency in industrial
settings, minimizing unplanned downtime, and ensuring customer satisfaction. Fault …