A survey on federated learning for resource-constrained IoT devices
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …
model by learning from multiple decentralized edge clients. FL enables on-device training …
Combining federated learning and edge computing toward ubiquitous intelligence in 6G network: Challenges, recent advances, and future directions
Full leverage of the huge volume of data generated on a large number of user devices for
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
providing intelligent services in the 6G network calls for Ubiquitous Intelligence (UI). A key to …
Green edge AI: A contemporary survey
Artificial intelligence (AI) technologies have emerged as pivotal enablers across a multitude
of industries, including consumer electronics, healthcare, and manufacturing, largely due to …
of industries, including consumer electronics, healthcare, and manufacturing, largely due to …
Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout
Federated Learning (FL) has been gaining significant traction across different ML tasks,
ranging from vision to keyboard predictions. In large-scale deployments, client heterogeneity …
ranging from vision to keyboard predictions. In large-scale deployments, client heterogeneity …
Split learning over wireless networks: Parallel design and resource management
Split learning (SL) is a collaborative learning framework, which can train an artificial
intelligence (AI) model between a device and an edge server by splitting the AI model into a …
intelligence (AI) model between a device and an edge server by splitting the AI model into a …
Model pruning enables efficient federated learning on edge devices
Federated learning (FL) allows model training from local data collected by edge/mobile
devices while preserving data privacy, which has wide applicability to image and vision …
devices while preserving data privacy, which has wide applicability to image and vision …
A systematic literature review on federated machine learning: From a software engineering perspective
Federated learning is an emerging machine learning paradigm where clients train models
locally and formulate a global model based on the local model updates. To identify the state …
locally and formulate a global model based on the local model updates. To identify the state …
Cost-effective federated learning design
Federated learning (FL) is a distributed learning paradigm that enables a large number of
devices to collaboratively learn a model without sharing their raw data. Despite its practical …
devices to collaboratively learn a model without sharing their raw data. Despite its practical …
Communication-efficient and distributed learning over wireless networks: Principles and applications
Machine learning (ML) is a promising enabler for the fifth-generation (5G) communication
systems and beyond. By imbuing intelligence into the network edge, edge nodes can …
systems and beyond. By imbuing intelligence into the network edge, edge nodes can …
Communication-efficient distributed learning: An overview
Distributed learning is envisioned as the bedrock of next-generation intelligent networks,
where intelligent agents, such as mobile devices, robots, and sensors, exchange information …
where intelligent agents, such as mobile devices, robots, and sensors, exchange information …