Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Evolutionary machine learning: A survey
Evolutionary Computation (EC) approaches are inspired by nature and solve optimization
problems in a stochastic manner. They can offer a reliable and effective approach to address …
problems in a stochastic manner. They can offer a reliable and effective approach to address …
A systematic review on imbalanced data challenges in machine learning: Applications and solutions
In machine learning, the data imbalance imposes challenges to perform data analytics in
almost all areas of real-world research. The raw primary data often suffers from the skewed …
almost all areas of real-world research. The raw primary data often suffers from the skewed …
DeepSMOTE: Fusing deep learning and SMOTE for imbalanced data
Despite over two decades of progress, imbalanced data is still considered a significant
challenge for contemporary machine learning models. Modern advances in deep learning …
challenge for contemporary machine learning models. Modern advances in deep learning …
Learning from class-imbalanced data: Review of methods and applications
Rare events, especially those that could potentially negatively impact society, often require
humans' decision-making responses. Detecting rare events can be viewed as a prediction …
humans' decision-making responses. Detecting rare events can be viewed as a prediction …
[HTML][HTML] Learning from imbalanced data: open challenges and future directions
B Krawczyk - Progress in artificial intelligence, 2016 - Springer
Despite more than two decades of continuous development learning from imbalanced data
is still a focus of intense research. Starting as a problem of skewed distributions of binary …
is still a focus of intense research. Starting as a problem of skewed distributions of binary …
Deep imbalanced learning for face recognition and attribute prediction
Data for face analysis often exhibit highly-skewed class distribution, ie, most data belong to
a few majority classes, while the minority classes only contain a scarce amount of instances …
a few majority classes, while the minority classes only contain a scarce amount of instances …
Improving cyberbullying detection using Twitter users' psychological features and machine learning
Empirical evidences linking users' psychological features such as personality traits and
cybercrimes such as cyberbullying are many. This study deals with automatic cyberbullying …
cybercrimes such as cyberbullying are many. This study deals with automatic cyberbullying …
Dynamic classifier selection: Recent advances and perspectives
Abstract Multiple Classifier Systems (MCS) have been widely studied as an alternative for
increasing accuracy in pattern recognition. One of the most promising MCS approaches is …
increasing accuracy in pattern recognition. One of the most promising MCS approaches is …
[HTML][HTML] KNNOR: An oversampling technique for imbalanced datasets
Abstract Predictive performance of Machine Learning (ML) models rely on the quality of data
used for training the models. However, if the training data is not balanced among different …
used for training the models. However, if the training data is not balanced among different …
A review on classification of imbalanced data for wireless sensor networks
Classification of imbalanced data is a vastly explored issue of the last and present decade
and still keeps the same importance because data are an essential term today and it …
and still keeps the same importance because data are an essential term today and it …