[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

Federated learning from pre-trained models: A contrastive learning approach

Y Tan, G Long, J Ma, L Liu, T Zhou… - Advances in neural …, 2022 - proceedings.neurips.cc
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …

Rethinking federated learning with domain shift: A prototype view

W Huang, M Ye, Z Shi, H Li, B Du - 2023 IEEE/CVF Conference …, 2023 - ieeexplore.ieee.org
Federated learning shows a bright promise as a privacy-preserving collaborative learning
technique. However, prevalent solutions mainly focus on all private data sampled from the …

Federated learning on non-iid graphs via structural knowledge sharing

Y Tan, Y Liu, G Long, J Jiang, Q Lu… - Proceedings of the AAAI …, 2023 - ojs.aaai.org
Graph neural networks (GNNs) have shown their superiority in modeling graph data. Owing
to the advantages of federated learning, federated graph learning (FGL) enables clients to …

Personalized federation learning with model-contrastive learning for multi-modal user modeling in human-centric metaverse

X Zhou, Q Yang, X Zheng, W Liang… - IEEE Journal on …, 2024 - ieeexplore.ieee.org
With the flourish of digital technologies and rapid development of 5G and beyond networks,
Metaverse has become an increasingly hotly discussed topic, which offers users with …

Decentralized federated learning: A survey and perspective

L Yuan, Z Wang, L Sun, SY Philip… - IEEE Internet of Things …, 2024 - ieeexplore.ieee.org
Federated learning (FL) has been gaining attention for its ability to share knowledge while
maintaining user data, protecting privacy, increasing learning efficiency, and reducing …

Digital twin based user-centric resource management for multicast short video streaming

X Huang, W Wu, S Hu, M Li, C Zhou… - IEEE Journal of …, 2023 - ieeexplore.ieee.org
Multicast short video streaming (MSVS) can effectively reduce network traffic load by
delivering identical video sequences to multiple users simultaneously. The existing MSVS …

Doubly contrastive representation learning for federated image recognition

Y Zhang, Y Xu, S Wei, Y Wang, Y Li, X Shang - Pattern Recognition, 2023 - Elsevier
This paper focuses on the problem of personalized federated learning (FL) with the schema
of contrastive learning (CL), which is to implement collaborative pattern classification by …

A comprehensive survey of federated transfer learning: challenges, methods and applications

W Guo, F Zhuang, X Zhang, Y Tong, J Dong - Frontiers of Computer …, 2024 - Springer
Federated learning (FL) is a novel distributed machine learning paradigm that enables
participants to collaboratively train a centralized model with privacy preservation by …