Continuous-time random-walk model for anomalous diffusion in expanding media

F Le Vot, E Abad, SB Yuste - Physical Review E, 2017‏ - APS
Expanding media are typical in many different fields, eg, in biology and cosmology. In
general, a medium expansion (contraction) brings about dramatic changes in the behavior …

Exact solutions for diffusive transport on heterogeneous growing domains

ST Johnston, MJ Simpson - Proceedings of the Royal …, 2023‏ - royalsocietypublishing.org
From the smallest biological systems to the largest cosmological structures, spatial domains
undergo expansion and contraction. Within these growing domains, diffusive transport is a …

Diffusion in an expanding medium: Fokker-Planck equation, Green's function, and first-passage properties

SB Yuste, E Abad, C Escudero - Physical Review E, 2016‏ - APS
We present a classical, mesoscopic derivation of the Fokker-Planck equation for diffusion in
an expanding medium. To this end, we take a conveniently generalized Chapman …

The role of mechanical interactions in EMT

RJ Murphy, PR Buenzli, TA Tambyah… - Physical …, 2021‏ - iopscience.iop.org
The detachment of cells from the boundary of an epithelial tissue and the subsequent
invasion of these cells into surrounding tissues is important for cancer development and …

Reaction-diffusion and reaction-subdiffusion equations on arbitrarily evolving domains

E Abad, CN Angstmann, BI Henry, AV McGann… - Physical Review E, 2020‏ - APS
Reaction-diffusion equations are widely used as the governing evolution equations for
modeling many physical, chemical, and biological processes. Here we derive reaction …

Standard and fractional Ornstein-Uhlenbeck process on a growing domain

F Le Vot, SB Yuste, E Abad - Physical Review E, 2019‏ - APS
We study normal diffusive and subdiffusive processes in a harmonic potential (Ornstein-
Uhlenbeck process) on a uniformly growing or contracting domain. Our starting point is a …

Generalized fractional diffusion equations for subdiffusion in arbitrarily growing domains

CN Angstmann, BI Henry, AV McGann - Physical Review E, 2017‏ - APS
The ubiquity of subdiffusive transport in physical and biological systems has led to intensive
efforts to provide robust theoretical models for this phenomena. These models often involve …

On Explicit Solutions for Coupled Reaction-Diffusion and Burgers-Type Equations with Variable Coefficients Through a Riccati System

JM Escorcia, E Suazo - arxiv preprint arxiv:2406.17690, 2024‏ - arxiv.org
This work is concerned with the study of explicit solutions for generalized coupled reaction-
diffusion and Burgers-type systems with variable coefficients. Including nonlinear models …

Lévy Walk Dynamics in an External Constant Force Field in Non-Static Media

T Zhou, P Xu, W Deng - Journal of Statistical Physics, 2022‏ - Springer
Based on the recognition of the huge change of the transport properties for diffusion
particles in non-static media, we consider a Lévy walk model subjected to an external …

Exact solutions and critical behaviour for a linear growth-diffusion equation on a time-dependent domain

J Allwright - Proceedings of the Edinburgh Mathematical Society, 2022‏ - cambridge.org
A linear growth-diffusion equation is studied in a time-dependent interval whose location
and length both vary. We prove conditions on the boundary motion for which the solution …