A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

A comprehensive survey of forgetting in deep learning beyond continual learning

Z Wang, E Yang, L Shen… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Forgetting refers to the loss or deterioration of previously acquired knowledge. While
existing surveys on forgetting have primarily focused on continual learning, forgetting is a …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arxiv preprint arxiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

Constrained few-shot class-incremental learning

M Hersche, G Karunaratne… - Proceedings of the …, 2022 - openaccess.thecvf.com
Continually learning new classes from fresh data without forgetting previous knowledge of
old classes is a very challenging research problem. Moreover, it is imperative that such …

Learning with fantasy: Semantic-aware virtual contrastive constraint for few-shot class-incremental learning

Z Song, Y Zhao, Y Shi, P Peng… - Proceedings of the …, 2023 - openaccess.thecvf.com
Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes
continually from limited samples without forgetting the old classes. The mainstream …

Few-shot class-incremental learning via class-aware bilateral distillation

L Zhao, J Lu, Y Xu, Z Cheng, D Guo… - Proceedings of the …, 2023 - openaccess.thecvf.com
Abstract Few-Shot Class-Incremental Learning (FSCIL) aims to continually learn novel
classes based on only few training samples, which poses a more challenging task than the …

[HTML][HTML] A survey on few-shot class-incremental learning

S Tian, L Li, W Li, H Ran, X Ning, P Tiwari - Neural Networks, 2024 - Elsevier
Large deep learning models are impressive, but they struggle when real-time data is not
available. Few-shot class-incremental learning (FSCIL) poses a significant challenge for …

Gkeal: Gaussian kernel embedded analytic learning for few-shot class incremental task

H Zhuang, Z Weng, R He, Z Lin… - Proceedings of the …, 2023 - openaccess.thecvf.com
Few-shot class incremental learning (FSCIL) aims to address catastrophic forgetting during
class incremental learning in a few-shot learning setting. In this paper, we approach the …

Generative Multi-modal Models are Good Class Incremental Learners

X Cao, H Lu, L Huang, X Liu… - Proceedings of the …, 2024 - openaccess.thecvf.com
In class incremental learning (CIL) scenarios the phenomenon of catastrophic forgetting
caused by the classifier's bias towards the current task has long posed a significant …