A comprehensive survey on deep graph representation learning
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …
structured data into low-dimensional dense vectors, which is a fundamental task that has …
A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and explainability
Graph neural networks (GNNs) have made rapid developments in the recent years. Due to
their great ability in modeling graph-structured data, GNNs are vastly used in various …
their great ability in modeling graph-structured data, GNNs are vastly used in various …
Nodeformer: A scalable graph structure learning transformer for node classification
Graph neural networks have been extensively studied for learning with inter-connected data.
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …
Despite this, recent evidence has revealed GNNs' deficiencies related to over-squashing …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Data augmentation for deep graph learning: A survey
Graph neural networks, a powerful deep learning tool to model graph-structured data, have
demonstrated remarkable performance on numerous graph learning tasks. To address the …
demonstrated remarkable performance on numerous graph learning tasks. To address the …
EGNN: Graph structure learning based on evolutionary computation helps more in graph neural networks
In recent years, graph neural networks (GNNs) have been successfully applied in many
fields due to their characteristics of neighborhood aggregation and have achieved state-of …
fields due to their characteristics of neighborhood aggregation and have achieved state-of …
Universal prompt tuning for graph neural networks
In recent years, prompt tuning has sparked a research surge in adapting pre-trained models.
Unlike the unified pre-training strategy employed in the language field, the graph field …
Unlike the unified pre-training strategy employed in the language field, the graph field …
MGLNN: Semi-supervised learning via multiple graph cooperative learning neural networks
In many machine learning applications, data are coming with multiple graphs, which is
known as the multiple graph learning problem. The problem of multiple graph learning is to …
known as the multiple graph learning problem. The problem of multiple graph learning is to …
Towards unsupervised deep graph structure learning
In recent years, graph neural networks (GNNs) have emerged as a successful tool in a
variety of graph-related applications. However, the performance of GNNs can be …
variety of graph-related applications. However, the performance of GNNs can be …
Trustworthy ai: A computational perspective
In the past few decades, artificial intelligence (AI) technology has experienced swift
developments, changing everyone's daily life and profoundly altering the course of human …
developments, changing everyone's daily life and profoundly altering the course of human …