[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
Trapped-ion quantum computing: Progress and challenges
CD Bruzewicz, J Chiaverini, R McConnell… - Applied Physics …, 2019 - pubs.aip.org
Trapped ions are among the most promising systems for practical quantum computing (QC).
The basic requirements for universal QC have all been demonstrated with ions, and …
The basic requirements for universal QC have all been demonstrated with ions, and …
Quantum logic with spin qubits crossing the surface code threshold
High-fidelity control of quantum bits is paramount for the reliable execution of quantum
algorithms and for achieving fault tolerance—the ability to correct errors faster than they …
algorithms and for achieving fault tolerance—the ability to correct errors faster than they …
Quantum supremacy using a programmable superconducting processor
The promise of quantum computers is that certain computational tasks might be executed
exponentially faster on a quantum processor than on a classical processor 1. A fundamental …
exponentially faster on a quantum processor than on a classical processor 1. A fundamental …
Barren plateaus in quantum neural network training landscapes
Many experimental proposals for noisy intermediate scale quantum devices involve training
a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum …
a parameterized quantum circuit with a classical optimization loop. Such hybrid quantum …
Quantum chemistry in the age of quantum computing
Practical challenges in simulating quantum systems on classical computers have been
widely recognized in the quantum physics and quantum chemistry communities over the …
widely recognized in the quantum physics and quantum chemistry communities over the …
Quantum computational chemistry
One of the most promising suggested applications of quantum computing is solving
classically intractable chemistry problems. This may help to answer unresolved questions …
classically intractable chemistry problems. This may help to answer unresolved questions …
Hybrid quantum-classical algorithms and quantum error mitigation
Quantum computers can exploit a Hilbert space whose dimension increases exponentially
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
Hartree-Fock on a superconducting qubit quantum computer
Google AI Quantum and Collaborators*†, F Arute… - Science, 2020 - science.org
The simulation of fermionic systems is among the most anticipated applications of quantum
computing. We performed several quantum simulations of chemistry with up to one dozen …
computing. We performed several quantum simulations of chemistry with up to one dozen …
An adaptive variational algorithm for exact molecular simulations on a quantum computer
Quantum simulation of chemical systems is one of the most promising near-term
applications of quantum computers. The variational quantum eigensolver, a leading …
applications of quantum computers. The variational quantum eigensolver, a leading …