Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries

H Ji, J Wang, J Ma, HM Cheng, G Zhou - Chemical Society Reviews, 2023 - pubs.rsc.org
Advancement in energy storage technologies is closely related to social development.
However, a significant conflict has arisen between the explosive growth in battery demand …

Enabling future closed‐loop recycling of spent lithium‐ion batteries: direct cathode regeneration

T Yang, D Luo, A Yu, Z Chen - Advanced materials, 2023 - Wiley Online Library
The rapid proliferation of electric vehicles equipped with lithium‐ion batteries (LIBs) presents
serious waste management challenges and environmental hazards for recyclers after scrap …

Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage

J Wang, K Jia, J Ma, Z Liang, Z Zhuang, Y Zhao… - Nature …, 2023 - nature.com
The continued market growth for electric vehicles globally is accelerating the
transformational shift to a low-carbon transportation future. However, the sustainability of this …

Recycling of lithium‐ion batteries—current state of the art, circular economy, and next generation recycling

J Neumann, M Petranikova, M Meeus… - Advanced energy …, 2022 - Wiley Online Library
Being successfully introduced into the market only 30 years ago, lithium‐ion batteries have
become state‐of‐the‐art power sources for portable electronic devices and the most …

Direct recovery: A sustainable recycling technology for spent lithium-ion battery

J Wu, M Zheng, T Liu, Y Wang, Y Liu, J Nai… - Energy Storage …, 2023 - Elsevier
The ever-growing amount of lithium (Li)-ion batteries (LIBs) has triggered surging concerns
regarding the supply risk of raw materials for battery manufacturing and environmental …

A materials perspective on direct recycling of lithium‐ion batteries: principles, challenges and opportunities

P Xu, DHS Tan, B Jiao, H Gao, X Yu… - Advanced Functional …, 2023 - Wiley Online Library
As the dominant means of energy storage technology today, the widespread deployment of
lithium‐ion batteries (LIBs) would inevitably generate countless spent batteries at their end …

Carbon neutrality strategies for sustainable batteries: from structure, recycling, and properties to applications

J Lin, X Zhang, E Fan, R Chen, F Wu… - Energy & Environmental …, 2023 - pubs.rsc.org
Research on new energy storage technologies has been sparked by the energy crisis,
greenhouse effect, and air pollution, leading to the continuous development and …

Toward practical lithium-ion battery recycling: adding value, tackling circularity and recycling-oriented design

J Mao, C Ye, S Zhang, F **e, R Zeng… - Energy & …, 2022 - pubs.rsc.org
Environmental pollution and critical materials loss from spent lithium-ion batteries (LIBs) is a
major global concern. Practical LIB recycling obviates pollution, saves resources and boosts …

Adaptable eutectic salt for the direct recycling of highly degraded layer cathodes

J Ma, J Wang, K Jia, Z Liang, G Ji… - Journal of the …, 2022 - ACS Publications
Recycling spent lithium-ion batteries (LIBs) is promising for resource reuse and
environmental conservation but suffers from complex processing and loss of embedded …

On the sustainability of lithium ion battery industry–A review and perspective

Y Yang, EG Okonkwo, G Huang, S Xu, W Sun… - Energy Storage …, 2021 - Elsevier
The consumption of rechargeable batteries has been increasing rapidly. High demand on
specific metals for battery manufacturing and environmental impacts from battery disposal …