A comprehensive review on breast cancer detection, classification and segmentation using deep learning

B Abhisheka, SK Biswas, B Purkayastha - Archives of Computational …, 2023 - Springer
The incidence and mortality rate of Breast Cancer (BC) are global problems for women, with
over 2.1 million new diagnoses each year worldwide. There is no age range, race, or …

Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review

H Chen, C Gomez, CM Huang, M Unberath - NPJ digital medicine, 2022 - nature.com
Abstract Transparency in Machine Learning (ML), often also referred to as interpretability or
explainability, attempts to reveal the working mechanisms of complex models. From a …

Deep Neuro-Fuzzy System application trends, challenges, and future perspectives: A systematic survey

N Talpur, SJ Abdulkadir, H Alhussian… - Artificial intelligence …, 2023 - Springer
Deep neural networks (DNN) have remarkably progressed in applications involving large
and complex datasets but have been criticized as a black-box. This downside has recently …

Vision-transformer-based transfer learning for mammogram classification

G Ayana, K Dese, Y Dereje, Y Kebede, H Barki… - Diagnostics, 2023 - mdpi.com
Breast mass identification is a crucial procedure during mammogram-based early breast
cancer diagnosis. However, it is difficult to determine whether a breast lump is benign or …

AdapGL: An adaptive graph learning algorithm for traffic prediction based on spatiotemporal neural networks

W Zhang, F Zhu, Y Lv, C Tan, W Liu, X Zhang… - … Research Part C …, 2022 - Elsevier
With well-defined graphs, graph convolution based spatiotemporal neural networks for traffic
prediction have achieved great performance in numerous tasks. Compared to other …

Automated breast cancer detection in mammography using ensemble classifier and feature weighting algorithms

F Yan, H Huang, W Pedrycz, K Hirota - Expert Systems with Applications, 2023 - Elsevier
Breast cancer exhibits one of the highest incidence and mortality rates among all cancers
affecting women. The early detection of breast cancer reduces mortality and is crucial for …

A comprehensive review of deep neuro-fuzzy system architectures and their optimization methods

N Talpur, SJ Abdulkadir, H Alhussian… - Neural Computing and …, 2022 - Springer
Deep neuro-fuzzy systems (DNFSs) have been successfully applied to real-world problems
using the efficient learning process of deep neural networks (DNNs) and reasoning aptitude …

A systematic literature review of breast cancer diagnosis using machine intelligence techniques

V Nemade, S Pathak, AK Dubey - Archives of Computational Methods in …, 2022 - Springer
Breast cancer is one of the most common diseases in women; it can have long-term
implications and can even be fatal. However, early detection, achieved through recent …

RRCNet: Refinement residual convolutional network for breast ultrasound images segmentation

G Chen, Y Dai, J Zhang - Engineering applications of artificial intelligence, 2023 - Elsevier
Breast ultrasound images segmentation is one of the key steps in clinical auxiliary diagnosis
of breast cancer, which seriously threatens women's health. Currently, deep learning …

Fuzzy machine learning: A comprehensive framework and systematic review

J Lu, G Ma, G Zhang - IEEE Transactions on Fuzzy Systems, 2024 - ieeexplore.ieee.org
Machine learning draws its power from various disciplines, including computer science,
cognitive science, and statistics. Although machine learning has achieved great …