Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises
Since its renaissance, deep learning has been widely used in various medical imaging tasks
and has achieved remarkable success in many medical imaging applications, thereby …
and has achieved remarkable success in many medical imaging applications, thereby …
Medical image segmentation using deep learning: A survey
Deep learning has been widely used for medical image segmentation and a large number of
papers has been presented recording the success of deep learning in the field. A …
papers has been presented recording the success of deep learning in the field. A …
Yolov9: Learning what you want to learn using programmable gradient information
Today's deep learning methods focus on how to design the objective functions to make the
prediction as close as possible to the target. Meanwhile, an appropriate neural network …
prediction as close as possible to the target. Meanwhile, an appropriate neural network …
YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
Real-time object detection is one of the most important research topics in computer vision.
As new approaches regarding architecture optimization and training optimization are …
As new approaches regarding architecture optimization and training optimization are …
Swin-umamba: Mamba-based unet with imagenet-based pretraining
Accurate medical image segmentation demands the integration of multi-scale information,
spanning from local features to global dependencies. However, it is challenging for existing …
spanning from local features to global dependencies. However, it is challenging for existing …
Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency
Abstract Despite that Convolutional Neural Networks (CNNs) have achieved promising
performance in many medical image segmentation tasks, they rely on a large set of labeled …
performance in many medical image segmentation tasks, they rely on a large set of labeled …
Simam: A simple, parameter-free attention module for convolutional neural networks
In this paper, we propose a conceptually simple but very effective attention module for
Convolutional Neural Networks (ConvNets). In contrast to existing channel-wise and spatial …
Convolutional Neural Networks (ConvNets). In contrast to existing channel-wise and spatial …
A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection
Change detection (CD) aims to identify surface changes from bitemporal images. In recent
years, deep learning (DL)-based methods have made substantial breakthroughs in the field …
years, deep learning (DL)-based methods have made substantial breakthroughs in the field …
Autoformer: Searching transformers for visual recognition
Recently, pure transformer-based models have shown great potentials for vision tasks such
as image classification and detection. However, the design of transformer networks is …
as image classification and detection. However, the design of transformer networks is …
[HTML][HTML] Pre-trained models: Past, present and future
Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved
great success and become a milestone in the field of artificial intelligence (AI). Owing to …
great success and become a milestone in the field of artificial intelligence (AI). Owing to …