Machine learning methods for small data challenges in molecular science
Small data are often used in scientific and engineering research due to the presence of
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
various constraints, such as time, cost, ethics, privacy, security, and technical limitations in …
Can deep learning beat numerical weather prediction?
The recent hype about artificial intelligence has sparked renewed interest in applying the
successful deep learning (DL) methods for image recognition, speech recognition, robotics …
successful deep learning (DL) methods for image recognition, speech recognition, robotics …
Learning a sparse transformer network for effective image deraining
Transformers-based methods have achieved significant performance in image deraining as
they can model the non-local information which is vital for high-quality image reconstruction …
they can model the non-local information which is vital for high-quality image reconstruction …
Images speak in images: A generalist painter for in-context visual learning
In-context learning, as a new paradigm in NLP, allows the model to rapidly adapt to various
tasks with only a handful of prompts and examples. But in computer vision, the difficulties for …
tasks with only a handful of prompts and examples. But in computer vision, the difficulties for …
Maxim: Multi-axis mlp for image processing
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …
network architectural designs for computer vision tasks. Although these models proved to be …
Restormer: Efficient transformer for high-resolution image restoration
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …
priors from large-scale data, these models have been extensively applied to image …
Deep generalized unfolding networks for image restoration
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …
most DNN methods are designed as a black box, lacking transparency and interpretability …
Hinet: Half instance normalization network for image restoration
In this paper, we explore the role of Instance Normalization in low-level vision tasks.
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Specifically, we present a novel block: Half Instance Normalization Block (HIN Block), to …
Transweather: Transformer-based restoration of images degraded by adverse weather conditions
JMJ Valanarasu, R Yasarla… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Removing adverse weather conditions like rain, fog, and snow from images is an important
problem in many applications. Most methods proposed in the literature have been designed …
problem in many applications. Most methods proposed in the literature have been designed …
Multi-stage progressive image restoration
Image restoration tasks demand a complex balance between spatial details and high-level
contextualized information while recovering images. In this paper, we propose a novel …
contextualized information while recovering images. In this paper, we propose a novel …