Recent advances on image edge detection: A comprehensive review

J **g, S Liu, G Wang, W Zhang, C Sun - Neurocomputing, 2022 - Elsevier
Edge detection is one of the most important and fundamental problems in the field of
computer vision and image processing. Edge contours extracted from images are widely …

Deep reinforcement learning in computer vision: a comprehensive survey

N Le, VS Rathour, K Yamazaki, K Luu… - Artificial Intelligence …, 2022 - Springer
Deep reinforcement learning augments the reinforcement learning framework and utilizes
the powerful representation of deep neural networks. Recent works have demonstrated the …

Motr: End-to-end multiple-object tracking with transformer

F Zeng, B Dong, Y Zhang, T Wang, X Zhang… - European Conference on …, 2022 - Springer
Temporal modeling of objects is a key challenge in multiple-object tracking (MOT). Existing
methods track by associating detections through motion-based and appearance-based …

Trackformer: Multi-object tracking with transformers

T Meinhardt, A Kirillov, L Leal-Taixe… - Proceedings of the …, 2022 - openaccess.thecvf.com
The challenging task of multi-object tracking (MOT) requires simultaneous reasoning about
track initialization, identity, and spatio-temporal trajectories. We formulate this task as a …

Tracking objects as points

X Zhou, V Koltun, P Krähenbühl - European conference on computer …, 2020 - Springer
Tracking has traditionally been the art of following interest points through space and time.
This changed with the rise of powerful deep networks. Nowadays, tracking is dominated by …

Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey

X Wu, W Li, D Hong, R Tao, Q Du - IEEE Geoscience and …, 2021 - ieeexplore.ieee.org
Owing to effective and flexible data acquisition, unmanned aerial vehicles (UAVs) have
recently become a hotspot across the fields of computer vision (CV) and remote sensing …

Declutr: Deep contrastive learning for unsupervised textual representations

J Giorgi, O Nitski, B Wang, G Bader - arxiv preprint arxiv:2006.03659, 2020 - arxiv.org
Sentence embeddings are an important component of many natural language processing
(NLP) systems. Like word embeddings, sentence embeddings are typically learned on large …

Deep learning in multi-object detection and tracking: state of the art

SK Pal, A Pramanik, J Maiti, P Mitra - Applied Intelligence, 2021 - Springer
Object detection and tracking is one of the most important and challenging branches in
computer vision, and have been widely applied in various fields, such as health-care …

Deep learning in video multi-object tracking: A survey

G Ciaparrone, FL Sánchez, S Tabik, L Troiano… - Neurocomputing, 2020 - Elsevier
Abstract The problem of Multiple Object Tracking (MOT) consists in following the trajectory of
different objects in a sequence, usually a video. In recent years, with the rise of Deep …

Unified transformer tracker for object tracking

F Ma, MZ Shou, L Zhu, H Fan, Y Xu… - Proceedings of the …, 2022 - openaccess.thecvf.com
As an important area in computer vision, object tracking has formed two separate
communities that respectively study Single Object Tracking (SOT) and Multiple Object …