Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …
particularly machine learning algorithms, range from initial image processing to high-level …
An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges
M Imani, H Ghassemian - Information fusion, 2020 - Elsevier
Hyperspectral images (HSIs) have a cube form containing spatial information in two
dimensions and rich spectral information in the third one. The high volume of spectral bands …
dimensions and rich spectral information in the third one. The high volume of spectral bands …
Morphological transformation and spatial-logical aggregation for tree species classification using hyperspectral imagery
Hyperspectral image (HSI) consists of abundant spectral and spatial characteristics, which
contribute to a more accurate identification of materials and land covers. However, most …
contribute to a more accurate identification of materials and land covers. However, most …
Vision transformers for remote sensing image classification
In this paper, we propose a remote-sensing scene-classification method based on vision
transformers. These types of networks, which are now recognized as state-of-the-art models …
transformers. These types of networks, which are now recognized as state-of-the-art models …
Spatial-spectral transformer for hyperspectral image classification
Recently, a great many deep convolutional neural network (CNN)-based methods have
been proposed for hyperspectral image (HSI) classification. Although the proposed CNN …
been proposed for hyperspectral image (HSI) classification. Although the proposed CNN …
Class-aligned and class-balancing generative domain adaptation for hyperspectral image classification
The task of hyperspectral image (HSI) classification is fundamental and crucial in HSI
processing. Currently, domain adaptive methods have become a research hotspot in HSI …
processing. Currently, domain adaptive methods have become a research hotspot in HSI …
Hyperspectral image classification—Traditional to deep models: A survey for future prospects
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …
because it benefits from the detailed spectral information contained in each pixel. Notably …
Residual spectral–spatial attention network for hyperspectral image classification
In the last five years, deep learning has been introduced to tackle the hyperspectral image
(HSI) classification and demonstrated good performance. In particular, the convolutional …
(HSI) classification and demonstrated good performance. In particular, the convolutional …
Hyperspectral image classification using a hybrid 3D-2D convolutional neural networks
S Ghaderizadeh, D Abbasi-Moghadam… - IEEE Journal of …, 2021 - ieeexplore.ieee.org
Due to the unique feature of the three-dimensional convolution neural network, it is used in
image classification. There are some problems such as noise, lack of labeled samples, the …
image classification. There are some problems such as noise, lack of labeled samples, the …
A simplified 2D-3D CNN architecture for hyperspectral image classification based on spatial–spectral fusion
C Yu, R Han, M Song, C Liu… - IEEE Journal of Selected …, 2020 - ieeexplore.ieee.org
Convolutional neural networks (CNN) have led to a successful breakthrough for
hyperspectral image classification (HSIC). Due to the intrinsic spatial-spectral specificities of …
hyperspectral image classification (HSIC). Due to the intrinsic spatial-spectral specificities of …