A review of the application of deep learning in intelligent fault diagnosis of rotating machinery

Z Zhu, Y Lei, G Qi, Y Chai, N Mazur, Y An, X Huang - Measurement, 2023 - Elsevier
With the rapid development of industry, fault diagnosis plays a more and more important role
in maintaining the health of equipment and ensuring the safe operation of equipment. Due to …

Deep transfer learning for bearing fault diagnosis: A systematic review since 2016

X Chen, R Yang, Y Xue, M Huang… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
The traditional deep learning-based bearing fault diagnosis approaches assume that the
training and test data follow the same distribution. This assumption, however, is not always …

Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain

Y **ao, H Shao, SY Han, Z Huo… - IEEE/ASME Transactions …, 2022 - ieeexplore.ieee.org
Unsupervised cross-domain fault diagnosis of bearings has practical significance; however,
the existing studies still face some problems. For example, transfer diagnosis scenarios are …

The emerging graph neural networks for intelligent fault diagnostics and prognostics: A guideline and a benchmark study

T Li, Z Zhou, S Li, C Sun, R Yan, X Chen - Mechanical Systems and Signal …, 2022 - Elsevier
Deep learning (DL)-based methods have advanced the field of Prognostics and Health
Management (PHM) in recent years, because of their powerful feature representation ability …

[HTML][HTML] A systematic review of rolling bearing fault diagnoses based on deep learning and transfer learning: Taxonomy, overview, application, open challenges …

M Hakim, AAB Omran, AN Ahmed, M Al-Waily… - Ain Shams Engineering …, 2023 - Elsevier
Rolling bearing fault detection is critical for improving production efficiency and lowering
accident rates in complicated mechanical systems, as well as huge monitoring data, posing …

Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network

H Zhao, J Liu, H Chen, J Chen, Y Li… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Bearing fault diagnosis is of significance to ensure the safe and reliable operation of a
motor. Deep learning provides a powerful ability to extract the features of raw data …

Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning

M **a, H Shao, D Williams, S Lu, L Shu… - Reliability Engineering & …, 2021 - Elsevier
Digital twin (DT) is emerging as a key technology for smart manufacturing. The high fidelity
DT model of the physical assets can produce system performance data that is close to …

Relationship transfer domain generalization network for rotating machinery fault diagnosis under different working conditions

Q Qian, J Zhou, Y Qin - IEEE transactions on industrial …, 2023 - ieeexplore.ieee.org
Many domain adaptation (DA) models have been explored for fault transfer diagnosis.
However, their successes completely rely on the availability of target-domain samples …

WavCapsNet: An interpretable intelligent compound fault diagnosis method by backward tracking

W Li, H Lan, J Chen, K Feng… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
With significant advantages in feature learning, the deep learning-based compound fault
(CF) diagnosis method has brought many successful applications for industrial equipment; …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …