[BOOK][B] Game theory and partial differential equations

P Blanc, JD Rossi - 2019 - books.google.com
Extending the well-known connection between classical linear potential theory and
probability theory (through the interplay between harmonic functions and martingales) to the …

Asymptotic profiles of nonlinear homogeneous evolution equations of gradient flow type

L Bungert, M Burger - Journal of Evolution Equations, 2020 - Springer
This work is concerned with the gradient flow of absolutely p-homogeneous convex
functionals on a Hilbert space, which we show to exhibit finite (p< 2 p< 2) or infinite …

The evolution problem associated with the fractional first eigenvalue

B Barrios, L Del Pezzo, A Quaas, JD Rossi - Nonlinearity, 2024 - iopscience.iop.org
In this paper we study the evolution problem associated with the first fractional eigenvalue.
We prove that the Dirichlet problem with homogeneous boundary condition is well posed for …

Hölder regularity for stochastic processes with bounded and measurable increments

Á Arroyo, P Blanc, M Parviainen - Annales de l'Institut Henri Poincaré C, 2022 - ems.press
We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete
stochastic processes. Such expectations can also be described as solutions to a dynamic …

Regularity properties for a class of non-uniformly elliptic Isaacs operators

F Ferrari, A Vitolo - Advanced Nonlinear Studies, 2020 - degruyter.com
We consider the elliptic differential operator defined as the sum of the minimum and the
maximum eigenvalue of the Hessian matrix, which can be viewed as a degenerate elliptic …

Lipschitz estimates for partial trace operators with extremal Hessian eigenvalues

A Vitolo - Advances in Nonlinear Analysis, 2022 - degruyter.com
We consider the Dirichlet problem for partial trace operators which include the smallest and
the largest eigenvalue of the Hessian matrix. It is related to two-player zero-sum differential …

[PDF][PDF] Singular elliptic equations with directional diffusion

A Vitolo - Math. Eng, 2021 - aimspress.com
We investigate conditions for the existence and uniqueness of viscosity solutions of the
Dirichlet problem for a degenerate elliptic equation describing a stationary diffusion, which …

Liouville-type theorems for partial trace equations with nonlinear gradient terms

B Kindu, A Mohammed, B Tsegaw - Journal of Mathematical Analysis and …, 2025 - Elsevier
In this paper, we will study various Liouville-type theorems for partial trace equations with
nonlinear gradient terms. Specifically, we will provide sufficient conditions for non-negative …

Time-dependent tug-of-war games and normalized parabolic p-Laplace equations

J Han - Nonlinear Analysis, 2022 - Elsevier
In this paper, we study value functions of time-dependent tug-of-war games. We first prove
the existence and uniqueness of value functions and verify that these game values satisfy a …

A game theoretical approximation for a parabolic/elliptic system with different operators

AM Miranda, JD Rossi - 2022 - ri.conicet.gov.ar
In this paper we find viscosity solutions to a coupled system composed by two equations, the
first one is parabolic and driven by the infinity Laplacian while the second one is elliptic and …