Artificial intelligence in the prediction of protein–ligand interactions: recent advances and future directions

A Dhakal, C McKay, JJ Tanner… - Briefings in …, 2022 - academic.oup.com
New drug production, from target identification to marketing approval, takes over 12 years
and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the …

Deep learning in virtual screening: recent applications and developments

TB Kimber, Y Chen, A Volkamer - International journal of molecular …, 2021 - mdpi.com
Drug discovery is a cost and time-intensive process that is often assisted by computational
methods, such as virtual screening, to speed up and guide the design of new compounds …

On the frustration to predict binding affinities from protein–ligand structures with deep neural networks

M Volkov, JA Turk, N Drizard, N Martin… - Journal of medicinal …, 2022 - ACS Publications
Accurate prediction of binding affinities from protein–ligand atomic coordinates remains a
major challenge in early stages of drug discovery. Using modular message passing graph …

Interactiongraphnet: A novel and efficient deep graph representation learning framework for accurate protein–ligand interaction predictions

D Jiang, CY Hsieh, Z Wu, Y Kang, J Wang… - Journal of medicinal …, 2021 - ACS Publications
Accurate quantification of protein–ligand interactions remains a key challenge to structure-
based drug design. However, traditional machine learning (ML)-based methods based on …

Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: a review

R Meli, GM Morris, PC Biggin - Frontiers in bioinformatics, 2022 - frontiersin.org
The rapid and accurate in silico prediction of protein-ligand binding free energies or binding
affinities has the potential to transform drug discovery. In recent years, there has been a …

Planet: a multi-objective graph neural network model for protein–ligand binding affinity prediction

X Zhang, H Gao, H Wang, Z Chen… - Journal of Chemical …, 2023 - ACS Publications
Predicting protein–ligand binding affinity is a central issue in drug design. Various deep
learning models have been published in recent years, where many of them rely on 3D …

Hac-net: A hybrid attention-based convolutional neural network for highly accurate protein–ligand binding affinity prediction

GW Kyro, RI Brent, VS Batista - Journal of Chemical Information …, 2023 - ACS Publications
Applying deep learning concepts from image detection and graph theory has greatly
advanced protein–ligand binding affinity prediction, a challenge with enormous ramifications …

Strategies of Artificial intelligence tools in the domain of nanomedicine

M Habeeb, HW You, M Umapathi, KK Ravikumar… - Journal of Drug Delivery …, 2024 - Elsevier
Nanomedicine is a field of medicine that uses nanotechnology to develop new diagnostic
tools and therapies for a wide range of medical conditions. It encompasses a variety of …

De novo molecule design through the molecular generative model conditioned by 3D information of protein binding sites

M Xu, T Ran, H Chen - Journal of Chemical Information and …, 2021 - ACS Publications
De novo molecule design through the molecular generative model has gained increasing
attention in recent years. Here, a novel generative model was proposed by integrating the …

Featurization strategies for protein–ligand interactions and their applications in scoring function development

G **ong, C Shen, Z Yang, D Jiang, S Liu… - Wiley …, 2022 - Wiley Online Library
The predictive performance of classical scoring functions (SFs) seems to have reached a
plateau. Currently, SFs relying on sophisticated machine learning techniques have shown …