Learning to receive help: Intervention-aware concept embedding models
Abstract Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by
constructing and explaining their predictions using a set of high-level concepts. A special …
constructing and explaining their predictions using a set of high-level concepts. A special …
[PDF][PDF] A decoder suffices for query-adaptive variational inference
Deep generative models like variational autoencoders (VAEs) are widely used for density
estimation and dimensionality reduction, but infer latent representations via amortized …
estimation and dimensionality reduction, but infer latent representations via amortized …
All-in-one simulation-based inference
Amortized Bayesian inference trains neural networks to solve stochastic inference problems
using model simulations, thereby making it possible to rapidly perform Bayesian inference …
using model simulations, thereby making it possible to rapidly perform Bayesian inference …
Open-vocabulary predictive world models from sensor observations
R Karlsson, R Asfandiyarov, A Carballo… - Sensors (Basel …, 2024 - pmc.ncbi.nlm.nih.gov
Cognitive scientists believe that adaptable intelligent agents like humans perform spatial
reasoning tasks by learned causal mental simulation. The problem of learning these …
reasoning tasks by learned causal mental simulation. The problem of learning these …
Predictive world models from real-world partial observations
Cognitive scientists believe adaptable intelligent agents like humans perform reasoning
through learned causal mental simulations of agents and environments. The problem of …
through learned causal mental simulations of agents and environments. The problem of …
Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation
We propose an importance sampling method for tractable and efficient estimation of
counterfactual expressions in general settings, named Exogenous Matching. By minimizing …
counterfactual expressions in general settings, named Exogenous Matching. By minimizing …
[PDF][PDF] A Predictive State Representation Framework for General-Purpose Mobile Reasoning Agents
R Karlsson - (No Title), 2024 - nagoya.repo.nii.ac.jp
The philosopher Immanuel Kant formulated the Categorical Imperative as the supreme
principle of all moral beings to do what is “universally good”[9, 10]. A logical consequence is …
principle of all moral beings to do what is “universally good”[9, 10]. A logical consequence is …
Stochastic Latent Domain Approaches to the Recovery and Prediction of High Dimensional Missing Data
C Cannella - 2023 - search.proquest.com
This work presents novel techniques for approaching missing data using generative models.
The main focus of these techniques is on leveraging the latent spaces of generative models …
The main focus of these techniques is on leveraging the latent spaces of generative models …
[PDF][PDF] Sum-Product-Set Networks for Density Learning of Tree-Structured Data
BM Rektoris - wiki.control.fel.cvut.cz
Guidelines: 1. Review the state-of-the-art in sum-product networks in the context of density
modeling, summarize its advantages and disadvantages. Illustrate their benefits on simple …
modeling, summarize its advantages and disadvantages. Illustrate their benefits on simple …
Sum-product-set modely pro učení hustot pravděpodobnosti stromových dat
R Martin - 2024 - dspace.cvut.cz
Výzkum a škálovatelnost výzkumu v oblasti strojového učení se urychlily přechodem od
ručního vytváření příznaků k automatické extrakci příznaků. Použití datového formátu JSON …
ručního vytváření příznaků k automatické extrakci příznaků. Použití datového formátu JSON …