Learning to receive help: Intervention-aware concept embedding models

M Espinosa Zarlenga, K Collins… - Advances in …, 2024 - proceedings.neurips.cc
Abstract Concept Bottleneck Models (CBMs) tackle the opacity of neural architectures by
constructing and explaining their predictions using a set of high-level concepts. A special …

[PDF][PDF] A decoder suffices for query-adaptive variational inference

S Agarwal, G Hope, A Younis… - The 39th Conference on …, 2023 - openreview.net
Deep generative models like variational autoencoders (VAEs) are widely used for density
estimation and dimensionality reduction, but infer latent representations via amortized …

All-in-one simulation-based inference

M Gloeckler, M Deistler, C Weilbach, F Wood… - arxiv preprint arxiv …, 2024 - arxiv.org
Amortized Bayesian inference trains neural networks to solve stochastic inference problems
using model simulations, thereby making it possible to rapidly perform Bayesian inference …

Open-vocabulary predictive world models from sensor observations

R Karlsson, R Asfandiyarov, A Carballo… - Sensors (Basel …, 2024 - pmc.ncbi.nlm.nih.gov
Cognitive scientists believe that adaptable intelligent agents like humans perform spatial
reasoning tasks by learned causal mental simulation. The problem of learning these …

Predictive world models from real-world partial observations

R Karlsson, A Carballo, K Fujii… - 2023 IEEE …, 2023 - ieeexplore.ieee.org
Cognitive scientists believe adaptable intelligent agents like humans perform reasoning
through learned causal mental simulations of agents and environments. The problem of …

Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation

Y Chen, D Du, L Tian - arxiv preprint arxiv:2410.13914, 2024 - arxiv.org
We propose an importance sampling method for tractable and efficient estimation of
counterfactual expressions in general settings, named Exogenous Matching. By minimizing …

[PDF][PDF] A Predictive State Representation Framework for General-Purpose Mobile Reasoning Agents

R Karlsson - (No Title), 2024 - nagoya.repo.nii.ac.jp
The philosopher Immanuel Kant formulated the Categorical Imperative as the supreme
principle of all moral beings to do what is “universally good”[9, 10]. A logical consequence is …

Stochastic Latent Domain Approaches to the Recovery and Prediction of High Dimensional Missing Data

C Cannella - 2023 - search.proquest.com
This work presents novel techniques for approaching missing data using generative models.
The main focus of these techniques is on leveraging the latent spaces of generative models …

[PDF][PDF] Sum-Product-Set Networks for Density Learning of Tree-Structured Data

BM Rektoris - wiki.control.fel.cvut.cz
Guidelines: 1. Review the state-of-the-art in sum-product networks in the context of density
modeling, summarize its advantages and disadvantages. Illustrate their benefits on simple …

Sum-product-set modely pro učení hustot pravděpodobnosti stromových dat

R Martin - 2024 - dspace.cvut.cz
Výzkum a škálovatelnost výzkumu v oblasti strojového učení se urychlily přechodem od
ručního vytváření příznaků k automatické extrakci příznaků. Použití datového formátu JSON …