[HTML][HTML] A systematic review of data fusion techniques for optimized structural health monitoring

S Hassani, U Dackermann, M Mousavi, J Li - Information Fusion, 2024 - Elsevier
Advancements in structural health monitoring (SHM) techniques have spiked in the past few
decades due to the rapid evolution of novel sensing and data transfer technologies. This …

Artificial intelligence-based methods for fusion of electronic health records and imaging data

F Mohsen, H Ali, N El Hajj, Z Shah - Scientific Reports, 2022 - nature.com
Healthcare data are inherently multimodal, including electronic health records (EHR),
medical images, and multi-omics data. Combining these multimodal data sources …

Prompt engineering for healthcare: Methodologies and applications

J Wang, E Shi, S Yu, Z Wu, C Ma, H Dai, Q Yang… - arxiv preprint arxiv …, 2023 - arxiv.org
Prompt engineering is a critical technique in the field of natural language processing that
involves designing and optimizing the prompts used to input information into models, aiming …

On the analyses of medical images using traditional machine learning techniques and convolutional neural networks

S Iqbal, A N. Qureshi, J Li, T Mahmood - Archives of Computational …, 2023 - Springer
Convolutional neural network (CNN) has shown dissuasive accomplishment on different
areas especially Object Detection, Segmentation, Reconstruction (2D and 3D), Information …

Deep learning based multimodal biomedical data fusion: An overview and comparative review

J Duan, J **ong, Y Li, W Ding - Information Fusion, 2024 - Elsevier
Multimodal biomedical data fusion plays a pivotal role in distilling comprehensible and
actionable insights by seamlessly integrating disparate biomedical data from multiple …

Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review

A Shoeibi, M Khodatars, M Jafari, N Ghassemi… - Information …, 2023 - Elsevier
Brain diseases, including tumors and mental and neurological disorders, seriously threaten
the health and well-being of millions of people worldwide. Structural and functional …

Deep learning on medical image analysis

J Wang, S Wang, Y Zhang - CAAI Transactions on Intelligence …, 2024 - Wiley Online Library
Medical image analysis plays an irreplaceable role in diagnosing, treating, and monitoring
various diseases. Convolutional neural networks (CNNs) have become popular as they can …

[HTML][HTML] A review of deep learning-based information fusion techniques for multimodal medical image classification

Y Li, MEH Daho, PH Conze, R Zeghlache… - Computers in Biology …, 2024 - Elsevier
Multimodal medical imaging plays a pivotal role in clinical diagnosis and research, as it
combines information from various imaging modalities to provide a more comprehensive …

Explainable deep-learning-based diagnosis of Alzheimer's disease using multimodal input fusion of PET and MRI Images

M Odusami, R Maskeliūnas, R Damaševičius… - Journal of Medical and …, 2023 - Springer
Purpose Alzheimer's disease (AD) is a progressive, incurable human brain illness that
impairs reasoning and retention as well as recall. Detecting AD in its preliminary stages …

[HTML][HTML] Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion

L Alzubaidi, ALD Khamael, A Salhi, Z Alammar… - Artificial Intelligence in …, 2024 - Elsevier
Deep learning (DL) in orthopaedics has gained significant attention in recent years.
Previous studies have shown that DL can be applied to a wide variety of orthopaedic tasks …