Self-supervised speech representation learning: A review

A Mohamed, H Lee, L Borgholt… - IEEE Journal of …, 2022 - ieeexplore.ieee.org
Although supervised deep learning has revolutionized speech and audio processing, it has
necessitated the building of specialist models for individual tasks and application scenarios …

Sparks of large audio models: A survey and outlook

S Latif, M Shoukat, F Shamshad, M Usama… - arxiv preprint arxiv …, 2023 - arxiv.org
This survey paper provides a comprehensive overview of the recent advancements and
challenges in applying large language models to the field of audio signal processing. Audio …

Gemini: a family of highly capable multimodal models

G Team, R Anil, S Borgeaud, JB Alayrac, J Yu… - arxiv preprint arxiv …, 2023 - arxiv.org
This report introduces a new family of multimodal models, Gemini, that exhibit remarkable
capabilities across image, audio, video, and text understanding. The Gemini family consists …

The llama 3 herd of models

A Dubey, A Jauhri, A Pandey, A Kadian… - arxiv preprint arxiv …, 2024 - arxiv.org
Modern artificial intelligence (AI) systems are powered by foundation models. This paper
presents a new set of foundation models, called Llama 3. It is a herd of language models …

Scaling speech technology to 1,000+ languages

V Pratap, A Tjandra, B Shi, P Tomasello, A Babu… - Journal of Machine …, 2024 - jmlr.org
Expanding the language coverage of speech technology has the potential to improve
access to information for many more people. However, current speech technology is …

Robust speech recognition via large-scale weak supervision

A Radford, JW Kim, T Xu, G Brockman… - International …, 2023 - proceedings.mlr.press
We study the capabilities of speech processing systems trained simply to predict large
amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual …

Google usm: Scaling automatic speech recognition beyond 100 languages

Y Zhang, W Han, J Qin, Y Wang, A Bapna… - arxiv preprint arxiv …, 2023 - arxiv.org
We introduce the Universal Speech Model (USM), a single large model that performs
automatic speech recognition (ASR) across 100+ languages. This is achieved by pre …

Naturalspeech 2: Latent diffusion models are natural and zero-shot speech and singing synthesizers

K Shen, Z Ju, X Tan, Y Liu, Y Leng, L He, T Qin… - arxiv preprint arxiv …, 2023 - arxiv.org
Scaling text-to-speech (TTS) to large-scale, multi-speaker, and in-the-wild datasets is
important to capture the diversity in human speech such as speaker identities, prosodies …

XLS-R: Self-supervised cross-lingual speech representation learning at scale

A Babu, C Wang, A Tjandra, K Lakhotia, Q Xu… - arxiv preprint arxiv …, 2021 - arxiv.org
This paper presents XLS-R, a large-scale model for cross-lingual speech representation
learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a …

Fleurs: Few-shot learning evaluation of universal representations of speech

A Conneau, M Ma, S Khanuja, Y Zhang… - 2022 IEEE Spoken …, 2023 - ieeexplore.ieee.org
We introduce FLEURS, the Few-shot Learning Evaluation of Universal Representations of
Speech benchmark. FLEURS is an n-way parallel speech dataset in 102 languages built on …