Graph neural networks in recommender systems: a survey
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …
alleviate such information overload. Due to the important application value of recommender …
A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …
understanding, research in recommendation has shifted to inventing new recommender …
Hypergraph contrastive collaborative filtering
Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing
users and items into latent representation space, with their correlative patterns from …
users and items into latent representation space, with their correlative patterns from …
Heterogeneous graph contrastive learning for recommendation
Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured
data in recommender systems. However, real-life recommendation scenarios usually involve …
data in recommender systems. However, real-life recommendation scenarios usually involve …
LightGCL: Simple yet effective graph contrastive learning for recommendation
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …
systems. Recently, GNNs integrated with contrastive learning have shown superior …
UltraGCN: ultra simplification of graph convolutional networks for recommendation
With the recent success of graph convolutional networks (GCNs), they have been widely
applied for recommendation, and achieved impressive performance gains. The core of …
applied for recommendation, and achieved impressive performance gains. The core of …
Self-supervised multi-channel hypergraph convolutional network for social recommendation
Social relations are often used to improve recommendation quality when user-item
interaction data is sparse in recommender systems. Most existing social recommendation …
interaction data is sparse in recommender systems. Most existing social recommendation …
Lightgcn: Simplifying and powering graph convolution network for recommendation
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative
filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well …
filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well …
Interest-aware message-passing GCN for recommendation
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is
attributed to their capability on learning good user and item embeddings by exploiting the …
attributed to their capability on learning good user and item embeddings by exploiting the …
Multi-modal self-supervised learning for recommendation
The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering
personalized recommender systems to incorporate various modalities (eg, visual, textual …
personalized recommender systems to incorporate various modalities (eg, visual, textual …