Graph neural networks in recommender systems: a survey

S Wu, F Sun, W Zhang, X **e, B Cui - ACM Computing Surveys, 2022 - dl.acm.org
With the explosive growth of online information, recommender systems play a key role to
alleviate such information overload. Due to the important application value of recommender …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

Hypergraph contrastive collaborative filtering

L **a, C Huang, Y Xu, J Zhao, D Yin… - Proceedings of the 45th …, 2022 - dl.acm.org
Collaborative Filtering (CF) has emerged as fundamental paradigms for parameterizing
users and items into latent representation space, with their correlative patterns from …

Heterogeneous graph contrastive learning for recommendation

M Chen, C Huang, L **a, W Wei, Y Xu… - Proceedings of the …, 2023 - dl.acm.org
Graph Neural Networks (GNNs) have become powerful tools in modeling graph-structured
data in recommender systems. However, real-life recommendation scenarios usually involve …

LightGCL: Simple yet effective graph contrastive learning for recommendation

X Cai, C Huang, L **a, X Ren - arxiv preprint arxiv:2302.08191, 2023 - arxiv.org
Graph neural network (GNN) is a powerful learning approach for graph-based recommender
systems. Recently, GNNs integrated with contrastive learning have shown superior …

UltraGCN: ultra simplification of graph convolutional networks for recommendation

K Mao, J Zhu, X **ao, B Lu, Z Wang, X He - Proceedings of the 30th ACM …, 2021 - dl.acm.org
With the recent success of graph convolutional networks (GCNs), they have been widely
applied for recommendation, and achieved impressive performance gains. The core of …

Self-supervised multi-channel hypergraph convolutional network for social recommendation

J Yu, H Yin, J Li, Q Wang, NQV Hung… - Proceedings of the web …, 2021 - dl.acm.org
Social relations are often used to improve recommendation quality when user-item
interaction data is sparse in recommender systems. Most existing social recommendation …

Lightgcn: Simplifying and powering graph convolution network for recommendation

X He, K Deng, X Wang, Y Li, Y Zhang… - Proceedings of the 43rd …, 2020 - dl.acm.org
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative
filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well …

Interest-aware message-passing GCN for recommendation

F Liu, Z Cheng, L Zhu, Z Gao, L Nie - Proceedings of the web conference …, 2021 - dl.acm.org
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is
attributed to their capability on learning good user and item embeddings by exploiting the …

Multi-modal self-supervised learning for recommendation

W Wei, C Huang, L **a, C Zhang - … of the ACM Web Conference 2023, 2023 - dl.acm.org
The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering
personalized recommender systems to incorporate various modalities (eg, visual, textual …