Quantum computing for finance
Quantum computers are expected to surpass the computational capabilities of classical
computers and have a transformative impact on numerous industry sectors. We present a …
computers and have a transformative impact on numerous industry sectors. We present a …
Noisy intermediate-scale quantum algorithms
A universal fault-tolerant quantum computer that can efficiently solve problems such as
integer factorization and unstructured database search requires millions of qubits with low …
integer factorization and unstructured database search requires millions of qubits with low …
The future of quantum computing with superconducting qubits
For the first time in history, we are seeing a branching point in computing paradigms with the
emergence of quantum processing units (QPUs). Extracting the full potential of computation …
emergence of quantum processing units (QPUs). Extracting the full potential of computation …
Challenges and opportunities in quantum optimization
Quantum computers have demonstrable ability to solve problems at a scale beyond brute-
force classical simulation. Interest in quantum algorithms has developed in many areas …
force classical simulation. Interest in quantum algorithms has developed in many areas …
Hybrid quantum-classical algorithms and quantum error mitigation
Quantum computers can exploit a Hilbert space whose dimension increases exponentially
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
with the number of qubits. In experiment, quantum supremacy has recently been achieved …
Quantum state preparation with optimal circuit depth: Implementations and applications
Quantum state preparation is an important subroutine for quantum computing. We show that
any n-qubit quantum state can be prepared with a Θ (n)-depth circuit using only single-and …
any n-qubit quantum state can be prepared with a Θ (n)-depth circuit using only single-and …
Quantum computing: A taxonomy, systematic review and future directions
Quantum computing (QC) is an emerging paradigm with the potential to offer significant
computational advantage over conventional classical computing by exploiting quantum …
computational advantage over conventional classical computing by exploiting quantum …
Quantum-centric supercomputing for materials science: A perspective on challenges and future directions
Computational models are an essential tool for the design, characterization, and discovery
of novel materials. Computationally hard tasks in materials science stretch the limits of …
of novel materials. Computationally hard tasks in materials science stretch the limits of …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …
Superconducting qubits: Current state of play
Superconducting qubits are leading candidates in the race to build a quantum computer
capable of realizing computations beyond the reach of modern supercomputers. The …
capable of realizing computations beyond the reach of modern supercomputers. The …