Practical quantum advantage in quantum simulation
The development of quantum computing across several technologies and platforms has
reached the point of having an advantage over classical computers for an artificial problem …
reached the point of having an advantage over classical computers for an artificial problem …
The randomized measurement toolbox
Programmable quantum simulators and quantum computers are opening unprecedented
opportunities for exploring and exploiting the properties of highly entangled complex …
opportunities for exploring and exploiting the properties of highly entangled complex …
Logical quantum processor based on reconfigurable atom arrays
Suppressing errors is the central challenge for useful quantum computing, requiring
quantum error correction (QEC),,,–for large-scale processing. However, the overhead in the …
quantum error correction (QEC),,,–for large-scale processing. However, the overhead in the …
Observing the quantum Mpemba effect in quantum simulations
The nonequilibrium physics of many-body quantum systems harbors various unconventional
phenomena. In this Letter, we experimentally investigate one of the most puzzling of these …
phenomena. In this Letter, we experimentally investigate one of the most puzzling of these …
Long-range interacting quantum systems
In this review recent investigations are summarized of many-body quantum systems with
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
Predicting many properties of a quantum system from very few measurements
Predicting the properties of complex, large-scale quantum systems is essential for
develo** quantum technologies. We present an efficient method for constructing an …
develo** quantum technologies. We present an efficient method for constructing an …
Learning quantum systems
The future development of quantum technologies relies on creating and manipulating
quantum systems of increasing complexity, with key applications in computation, simulation …
quantum systems of increasing complexity, with key applications in computation, simulation …
Topological order from measurements and feed-forward on a trapped ion quantum computer
Quantum systems evolve in time in one of two ways: through the Schrödinger equation or
wavefunction collapse. So far, deterministic control of quantum many-body systems in the …
wavefunction collapse. So far, deterministic control of quantum many-body systems in the …
Quantum simulation and computing with Rydberg-interacting qubits
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a
competitive physical platform for quantum simulation and computing, where high-fidelity …
competitive physical platform for quantum simulation and computing, where high-fidelity …
Non-Abelian braiding of Fibonacci anyons with a superconducting processor
Quantum many-body systems with a non-Abelian topological order can host anyonic
quasiparticles. It has been proposed that anyons could be used to encode and manipulate …
quasiparticles. It has been proposed that anyons could be used to encode and manipulate …