A comprehensive survey of ai-generated content (aigc): A history of generative ai from gan to chatgpt

Y Cao, S Li, Y Liu, Z Yan, Y Dai, PS Yu… - arxiv preprint arxiv …, 2023 - arxiv.org
Recently, ChatGPT, along with DALL-E-2 and Codex, has been gaining significant attention
from society. As a result, many individuals have become interested in related resources and …

Survey on factuality in large language models: Knowledge, retrieval and domain-specificity

C Wang, X Liu, Y Yue, X Tang, T Zhang… - arxiv preprint arxiv …, 2023 - arxiv.org
This survey addresses the crucial issue of factuality in Large Language Models (LLMs). As
LLMs find applications across diverse domains, the reliability and accuracy of their outputs …

A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions

L Huang, W Yu, W Ma, W Zhong, Z Feng… - ACM Transactions on …, 2025 - dl.acm.org
The emergence of large language models (LLMs) has marked a significant breakthrough in
natural language processing (NLP), fueling a paradigm shift in information acquisition …

Siren's song in the AI ocean: a survey on hallucination in large language models

Y Zhang, Y Li, L Cui, D Cai, L Liu, T Fu… - arxiv preprint arxiv …, 2023 - arxiv.org
While large language models (LLMs) have demonstrated remarkable capabilities across a
range of downstream tasks, a significant concern revolves around their propensity to exhibit …

Improving factuality and reasoning in language models through multiagent debate

Y Du, S Li, A Torralba, JB Tenenbaum… - Forty-first International …, 2023 - openreview.net
Large language models (LLMs) have demonstrated remarkable capabilities in language
generation, understanding, and few-shot learning in recent years. An extensive body of work …

Factscore: Fine-grained atomic evaluation of factual precision in long form text generation

S Min, K Krishna, X Lyu, M Lewis, W Yih… - arxiv preprint arxiv …, 2023 - arxiv.org
Evaluating the factuality of long-form text generated by large language models (LMs) is non-
trivial because (1) generations often contain a mixture of supported and unsupported pieces …

Hallucination is inevitable: An innate limitation of large language models

Z Xu, S Jain, M Kankanhalli - arxiv preprint arxiv:2401.11817, 2024 - arxiv.org
Hallucination has been widely recognized to be a significant drawback for large language
models (LLMs). There have been many works that attempt to reduce the extent of …

Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation

Q Huang, X Dong, P Zhang, B Wang… - Proceedings of the …, 2024 - openaccess.thecvf.com
Hallucination posed as a pervasive challenge of multi-modal large language models
(MLLMs) has significantly impeded their real-world usage that demands precise judgment …

Critic: Large language models can self-correct with tool-interactive critiquing

Z Gou, Z Shao, Y Gong, Y Shen, Y Yang… - arxiv preprint arxiv …, 2023 - arxiv.org
Recent developments in large language models (LLMs) have been impressive. However,
these models sometimes show inconsistencies and problematic behavior, such as …

Large legal fictions: Profiling legal hallucinations in large language models

M Dahl, V Magesh, M Suzgun… - Journal of Legal Analysis, 2024 - academic.oup.com
Do large language models (LLMs) know the law? LLMs are increasingly being used to
augment legal practice, education, and research, yet their revolutionary potential is …