An overview of implementing security and privacy in federated learning

K Hu, S Gong, Q Zhang, C Seng, M **a… - Artificial Intelligence …, 2024 - Springer
Federated learning has received a great deal of research attention recently, with privacy
protection becoming a key factor in the development of artificial intelligence. Federated …

The impact of adversarial attacks on federated learning: A survey

KN Kumar, CK Mohan… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Federated learning (FL) has emerged as a powerful machine learning technique that
enables the development of models from decentralized data sources. However, the …

Security and privacy threats to federated learning: Issues, methods, and challenges

J Zhang, H Zhu, F Wang, J Zhao… - Security and …, 2022 - Wiley Online Library
Federated learning (FL) has nourished a promising method for data silos, which enables
multiple participants to construct a joint model collaboratively without centralizing data. The …

Survey on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges

N Rodríguez-Barroso, D Jiménez-López, MV Luzón… - Information …, 2023 - Elsevier
Federated learning is a machine learning paradigm that emerges as a solution to the privacy-
preservation demands in artificial intelligence. As machine learning, federated learning is …

A survey of trustworthy federated learning: Issues, solutions, and challenges

Y Zhang, D Zeng, J Luo, X Fu, G Chen, Z Xu… - ACM Transactions on …, 2024 - dl.acm.org
Trustworthy artificial intelligence (TAI) has proven invaluable in curbing potential negative
repercussions tied to AI applications. Within the TAI spectrum, federated learning (FL) …

A survey of trustworthy federated learning with perspectives on security, robustness and privacy

Y Zhang, D Zeng, J Luo, Z Xu, I King - … of the ACM Web Conference 2023, 2023 - dl.acm.org
Trustworthy artificial intelligence (AI) technology has revolutionized daily life and greatly
benefited human society. Among various AI technologies, Federated Learning (FL) stands …

A review of secure federated learning: privacy leakage threats, protection technologies, challenges and future directions

L Ge, H Li, X Wang, Z Wang - Neurocomputing, 2023 - Elsevier
Advances in the new generation of Internet of Things (IoT) technology are propelling the
growth of intelligent industrial applications worldwide. Simultaneously, widespread adoption …

[HTML][HTML] A survey of security strategies in federated learning: Defending models, data, and privacy

HU Manzoor, A Shabbir, A Chen, D Flynn, A Zoha - Future Internet, 2024 - mdpi.com
Federated Learning (FL) has emerged as a transformative paradigm in machine learning,
enabling decentralized model training across multiple devices while preserving data …

Fairness and privacy preserving in federated learning: A survey

TH Rafi, FA Noor, T Hussain, DK Chae - Information Fusion, 2024 - Elsevier
Federated Learning (FL) is an increasingly popular form of distributed machine learning that
addresses privacy concerns by allowing participants to collaboratively train machine …

A systematic review of federated learning from clients' perspective: challenges and solutions

Y Shanmugarasa, H Paik, SS Kanhere… - Artificial Intelligence …, 2023 - Springer
Federated learning (FL) is a machine learning approach that decentralizes data and its
processing by allowing clients to train intermediate models on their devices with locally …