Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey of continual learning: Theory, method and application
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
Towards open world object detection
Humans have a natural instinct to identify unknown object instances in their environments.
The intrinsic curiosity about these unknown instances aids in learning about them, when the …
The intrinsic curiosity about these unknown instances aids in learning about them, when the …
Online continual learning through mutual information maximization
This paper proposed a new online continual learning approach called OCM based on
mutual information (MI) maximization. It achieves two objectives that are critical in dealing …
mutual information (MI) maximization. It achieves two objectives that are critical in dealing …
Class-incremental learning: survey and performance evaluation on image classification
For future learning systems, incremental learning is desirable because it allows for: efficient
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …
resource usage by eliminating the need to retrain from scratch at the arrival of new data; …
Online continual learning in image classification: An empirical survey
Online continual learning for image classification studies the problem of learning to classify
images from an online stream of data and tasks, where tasks may include new classes …
images from an online stream of data and tasks, where tasks may include new classes …
Gdumb: A simple approach that questions our progress in continual learning
We discuss a general formulation for the Continual Learning (CL) problem for classification—
a learning task where a stream provides samples to a learner and the goal of the learner …
a learning task where a stream provides samples to a learner and the goal of the learner …
Computationally budgeted continual learning: What does matter?
Continual Learning (CL) aims to sequentially train models on streams of incoming data that
vary in distribution by preserving previous knowledge while adapting to new data. Current …
vary in distribution by preserving previous knowledge while adapting to new data. Current …
Few-shot class-incremental learning by sampling multi-phase tasks
New classes arise frequently in our ever-changing world, eg, emerging topics in social
media and new types of products in e-commerce. A model should recognize new classes …
media and new types of products in e-commerce. A model should recognize new classes …
Overcoming catastrophic forgetting in incremental few-shot learning by finding flat minima
This paper considers incremental few-shot learning, which requires a model to continually
recognize new categories with only a few examples provided. Our study shows that existing …
recognize new categories with only a few examples provided. Our study shows that existing …