Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Challenges and opportunities in quantum machine learning
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …
has the potential of accelerating data analysis, especially for quantum data, with …
Quantum computing for high-energy physics: State of the art and challenges
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …
natural sciences and beyond, with the potential for achieving a so-called quantum …
Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing
A large amount of effort has recently been put into understanding the barren plateau
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …
[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …
received significant attention from the research community in recent years. It uses the …
Generalization in quantum machine learning from few training data
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …
parameterized quantum circuit on a training data set, and subsequently making predictions …
Connecting ansatz expressibility to gradient magnitudes and barren plateaus
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …
Noise-induced barren plateaus in variational quantum algorithms
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …
A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits
M Ragone, BN Bakalov, F Sauvage, AF Kemper… - Nature …, 2024 - nature.com
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …
through a parametrized quantum circuit, and measuring the expectation value of some …
A review of barren plateaus in variational quantum computing
Variational quantum computing offers a flexible computational paradigm with applications in
diverse areas. However, a key obstacle to realizing their potential is the Barren Plateau (BP) …
diverse areas. However, a key obstacle to realizing their potential is the Barren Plateau (BP) …
Exponential concentration in quantum kernel methods
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …
significant attention as a potential candidate for achieving a quantum advantage in data …