Challenges and opportunities in quantum machine learning

M Cerezo, G Verdon, HY Huang, L Cincio… - Nature computational …, 2022 - nature.com
At the intersection of machine learning and quantum computing, quantum machine learning
has the potential of accelerating data analysis, especially for quantum data, with …

Quantum computing for high-energy physics: State of the art and challenges

A Di Meglio, K Jansen, I Tavernelli, C Alexandrou… - PRX Quantum, 2024 - APS
Quantum computers offer an intriguing path for a paradigmatic change of computing in the
natural sciences and beyond, with the potential for achieving a so-called quantum …

Does provable absence of barren plateaus imply classical simulability? or, why we need to rethink variational quantum computing

M Cerezo, M Larocca, D García-Martín, NL Diaz… - arxiv preprint arxiv …, 2023 - arxiv.org
A large amount of effort has recently been put into understanding the barren plateau
phenomenon. In this perspective article, we face the increasingly loud elephant in the room …

[HTML][HTML] The variational quantum eigensolver: a review of methods and best practices

J Tilly, H Chen, S Cao, D Picozzi, K Setia, Y Li, E Grant… - Physics Reports, 2022 - Elsevier
The variational quantum eigensolver (or VQE), first developed by Peruzzo et al.(2014), has
received significant attention from the research community in recent years. It uses the …

Generalization in quantum machine learning from few training data

MC Caro, HY Huang, M Cerezo, K Sharma… - Nature …, 2022 - nature.com
Modern quantum machine learning (QML) methods involve variationally optimizing a
parameterized quantum circuit on a training data set, and subsequently making predictions …

Connecting ansatz expressibility to gradient magnitudes and barren plateaus

Z Holmes, K Sharma, M Cerezo, PJ Coles - PRX quantum, 2022 - APS
Parametrized quantum circuits serve as ansatze for solving variational problems and
provide a flexible paradigm for the programming of near-term quantum computers. Ideally …

Noise-induced barren plateaus in variational quantum algorithms

S Wang, E Fontana, M Cerezo, K Sharma… - Nature …, 2021 - nature.com
Abstract Variational Quantum Algorithms (VQAs) may be a path to quantum advantage on
Noisy Intermediate-Scale Quantum (NISQ) computers. A natural question is whether noise …

A Lie algebraic theory of barren plateaus for deep parameterized quantum circuits

M Ragone, BN Bakalov, F Sauvage, AF Kemper… - Nature …, 2024 - nature.com
Variational quantum computing schemes train a loss function by sending an initial state
through a parametrized quantum circuit, and measuring the expectation value of some …

A review of barren plateaus in variational quantum computing

M Larocca, S Thanasilp, S Wang, K Sharma… - arxiv preprint arxiv …, 2024 - arxiv.org
Variational quantum computing offers a flexible computational paradigm with applications in
diverse areas. However, a key obstacle to realizing their potential is the Barren Plateau (BP) …

Exponential concentration in quantum kernel methods

S Thanasilp, S Wang, M Cerezo, Z Holmes - Nature communications, 2024 - nature.com
Abstract Kernel methods in Quantum Machine Learning (QML) have recently gained
significant attention as a potential candidate for achieving a quantum advantage in data …