Heterogeneous federated learning: State-of-the-art and research challenges

M Ye, X Fang, B Du, PC Yuen, D Tao - ACM Computing Surveys, 2023 - dl.acm.org
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …

[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

Fedala: Adaptive local aggregation for personalized federated learning

J Zhang, Y Hua, H Wang, T Song, Z Xue… - Proceedings of the …, 2023 - ojs.aaai.org
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the
generalization of the global model on each client. To address this, we propose a method …

Mix-of-show: Decentralized low-rank adaptation for multi-concept customization of diffusion models

Y Gu, X Wang, JZ Wu, Y Shi, Y Chen… - Advances in …, 2023 - proceedings.neurips.cc
Public large-scale text-to-image diffusion models, such as Stable Diffusion, have gained
significant attention from the community. These models can be easily customized for new …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …

Fine-tuning global model via data-free knowledge distillation for non-iid federated learning

L Zhang, L Shen, L Ding, D Tao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Federated Learning (FL) is an emerging distributed learning paradigm under privacy
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …

Federated learning from pre-trained models: A contrastive learning approach

Y Tan, G Long, J Ma, L Liu, T Zhou… - Advances in neural …, 2022 - proceedings.neurips.cc
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …

Fedfed: Feature distillation against data heterogeneity in federated learning

Z Yang, Y Zhang, Y Zheng, X Tian… - Advances in …, 2023 - proceedings.neurips.cc
Federated learning (FL) typically faces data heterogeneity, ie, distribution shifting among
clients. Sharing clients' information has shown great potentiality in mitigating data …

Federated learning for generalization, robustness, fairness: A survey and benchmark

W Huang, M Ye, Z Shi, G Wan, H Li… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …

Towards personalized federated learning

AZ Tan, H Yu, L Cui, Q Yang - IEEE transactions on neural …, 2022 - ieeexplore.ieee.org
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …