Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Heterogeneous federated learning: State-of-the-art and research challenges
Federated learning (FL) has drawn increasing attention owing to its potential use in large-
scale industrial applications. Existing FL works mainly focus on model homogeneous …
scale industrial applications. Existing FL works mainly focus on model homogeneous …
[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …
models to be trained on client devices while ensuring the privacy of user data. Model …
Fedala: Adaptive local aggregation for personalized federated learning
A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the
generalization of the global model on each client. To address this, we propose a method …
generalization of the global model on each client. To address this, we propose a method …
Mix-of-show: Decentralized low-rank adaptation for multi-concept customization of diffusion models
Public large-scale text-to-image diffusion models, such as Stable Diffusion, have gained
significant attention from the community. These models can be easily customized for new …
significant attention from the community. These models can be easily customized for new …
Learn from others and be yourself in heterogeneous federated learning
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …
normally involves collaborative updating with others and local updating on private data …
Fine-tuning global model via data-free knowledge distillation for non-iid federated learning
Federated Learning (FL) is an emerging distributed learning paradigm under privacy
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …
constraint. Data heterogeneity is one of the main challenges in FL, which results in slow …
Federated learning from pre-trained models: A contrastive learning approach
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to
learn collaboratively without sharing their private data. However, excessive computation and …
learn collaboratively without sharing their private data. However, excessive computation and …
Fedfed: Feature distillation against data heterogeneity in federated learning
Federated learning (FL) typically faces data heterogeneity, ie, distribution shifting among
clients. Sharing clients' information has shown great potentiality in mitigating data …
clients. Sharing clients' information has shown great potentiality in mitigating data …
Federated learning for generalization, robustness, fairness: A survey and benchmark
Federated learning has emerged as a promising paradigm for privacy-preserving
collaboration among different parties. Recently, with the popularity of federated learning, an …
collaboration among different parties. Recently, with the popularity of federated learning, an …
Towards personalized federated learning
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI
research, there has been growing awareness and concerns of data privacy. Recent …
research, there has been growing awareness and concerns of data privacy. Recent …