AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives

Y Himeur, M Elnour, F Fadli, N Meskin, I Petri… - Artificial Intelligence …, 2023 - Springer
In theory, building automation and management systems (BAMSs) can provide all the
components and functionalities required for analyzing and operating buildings. However, in …

Network intrusion detection system: A systematic study of machine learning and deep learning approaches

Z Ahmad, A Shahid Khan, C Wai Shiang… - Transactions on …, 2021 - Wiley Online Library
The rapid advances in the internet and communication fields have resulted in a huge
increase in the network size and the corresponding data. As a result, many novel attacks are …

[HTML][HTML] A machine learning-based intrusion detection for detecting internet of things network attacks

YK Saheed, AI Abiodun, S Misra, MK Holone… - Alexandria Engineering …, 2022 - Elsevier
Abstract The Internet of Things (IoT) refers to the collection of all those devices that could
connect to the Internet to collect and share data. The introduction of varied devices …

An effective intrusion detection approach using SVM with naïve Bayes feature embedding

J Gu, S Lu - Computers & Security, 2021 - Elsevier
Network security has become increasingly important in recent decades, while intrusion
detection system plays a critical role in protecting it. Various machine learning techniques …

RTIDS: A robust transformer-based approach for intrusion detection system

Z Wu, H Zhang, P Wang, Z Sun - IEEE Access, 2022 - ieeexplore.ieee.org
Due to the rapid growth in network traffic and increasing security threats, Intrusion Detection
Systems (IDS) have become increasingly critical in the field of cyber security for providing …

Hybrid deep learning for botnet attack detection in the internet-of-things networks

SI Popoola, B Adebisi, M Hammoudeh… - IEEE Internet of …, 2020 - ieeexplore.ieee.org
Deep learning (DL) is an efficient method for botnet attack detection. However, the volume of
network traffic data and memory space required is usually large. It is, therefore, almost …

An effective convolutional neural network based on SMOTE and Gaussian mixture model for intrusion detection in imbalanced dataset

H Zhang, L Huang, CQ Wu, Z Li - Computer Networks, 2020 - Elsevier
Abstract Network Intrusion Detection System (NIDS) is a key security device in modern
networks to detect malicious activities. However, the problem of imbalanced class …

DL‐IDS: Extracting Features Using CNN‐LSTM Hybrid Network for Intrusion Detection System

P Sun, P Liu, Q Li, C Liu, X Lu, R Hao… - Security and …, 2020 - Wiley Online Library
Many studies utilized machine learning schemes to improve network intrusion detection
systems recently. Most of the research is based on manually extracted features, but this …

A novel two-stage deep learning model for network intrusion detection: LSTM-AE

V Hnamte, H Nhung-Nguyen, J Hussain… - Ieee …, 2023 - ieeexplore.ieee.org
Machine learning and deep learning techniques are widely used to evaluate intrusion
detection systems (IDS) capable of rapidly and automatically recognizing and classifying …

Deep learning for intrusion detection and security of Internet of things (IoT): current analysis, challenges, and possible solutions

AR Khan, M Kashif, RH Jhaveri, R Raut… - Security and …, 2022 - Wiley Online Library
In the last decade, huge growth is recorded globally in computer networks and Internet of
Things (IoT) networks due to the exponential data generation, approximately zettabyte to a …