Federated learning for smart cities: A comprehensive survey

S Pandya, G Srivastava, R Jhaveri, MR Babu… - Sustainable Energy …, 2023 - Elsevier
With the advent of new technologies such as the Artificial Intelligence of Things (AIoT), big
data, fog computing, and edge computing, smart city applications have suffered from issues …

At the confluence of artificial intelligence and edge computing in iot-based applications: A review and new perspectives

A Bourechak, O Zedadra, MN Kouahla, A Guerrieri… - Sensors, 2023 - mdpi.com
Given its advantages in low latency, fast response, context-aware services, mobility, and
privacy preservation, edge computing has emerged as the key support for intelligent …

Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing

W Xu, Z Yang, DWK Ng, M Levorato… - IEEE journal of …, 2023 - ieeexplore.ieee.org
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …

Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach

Y Li, R Wang, Y Li, M Zhang, C Long - Applied Energy, 2023 - Elsevier
In a modern power system with an increasing proportion of renewable energy, wind power
prediction is crucial to the arrangement of power grid dispatching plans due to the volatility …

Federated learning-based AI approaches in smart healthcare: concepts, taxonomies, challenges and open issues

A Rahman, MS Hossain, G Muhammad, D Kundu… - Cluster computing, 2023 - Springer
Abstract Federated Learning (FL), Artificial Intelligence (AI), and Explainable Artificial
Intelligence (XAI) are the most trending and exciting technology in the intelligent healthcare …

Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Federated learning for connected and automated vehicles: A survey of existing approaches and challenges

VP Chellapandi, L Yuan, CG Brinton… - IEEE Transactions …, 2023 - ieeexplore.ieee.org
Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles
(CAV), including perception, planning, and control. However, its reliance on vehicular data …

A survey on intelligent Internet of Things: Applications, security, privacy, and future directions

O Aouedi, TH Vu, A Sacco, DC Nguyen… - … surveys & tutorials, 2024 - ieeexplore.ieee.org
The rapid advances in the Internet of Things (IoT) have promoted a revolution in
communication technology and offered various customer services. Artificial intelligence (AI) …

A survey on federated learning

C Zhang, Y **e, H Bai, B Yu, W Li, Y Gao - Knowledge-Based Systems, 2021 - Elsevier
Federated learning is a set-up in which multiple clients collaborate to solve machine
learning problems, which is under the coordination of a central aggregator. This setting also …