Machine learning for molecular and materials science

KT Butler, DW Davies, H Cartwright, O Isayev, A Walsh - Nature, 2018 - nature.com
Here we summarize recent progress in machine learning for the chemical sciences. We
outline machine-learning techniques that are suitable for addressing research questions in …

Deep learning for the design of photonic structures

W Ma, Z Liu, ZA Kudyshev, A Boltasseva, W Cai… - Nature Photonics, 2021 - nature.com
Innovative approaches and tools play an important role in sha** design, characterization
and optimization for the field of photonics. As a subset of machine learning that learns …

Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators

L Lu, P **, G Pang, Z Zhang… - Nature machine …, 2021 - nature.com
It is widely known that neural networks (NNs) are universal approximators of continuous
functions. However, a less known but powerful result is that a NN with a single hidden layer …

Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis - Journal of Computational physics, 2019 - Elsevier
We introduce physics-informed neural networks–neural networks that are trained to solve
supervised learning tasks while respecting any given laws of physics described by general …

Interpretable machine learning: Fundamental principles and 10 grand challenges

C Rudin, C Chen, Z Chen, H Huang… - Statistic …, 2022 - projecteuclid.org
Interpretability in machine learning (ML) is crucial for high stakes decisions and
troubleshooting. In this work, we provide fundamental principles for interpretable ML, and …

[BOOK][B] Data-driven science and engineering: Machine learning, dynamical systems, and control

SL Brunton, JN Kutz - 2022 - books.google.com
Data-driven discovery is revolutionizing how we model, predict, and control complex
systems. Now with Python and MATLAB®, this textbook trains mathematical scientists and …

Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations

M Raissi, A Yazdani, GE Karniadakis - Science, 2020 - science.org
For centuries, flow visualization has been the art of making fluid motion visible in physical
and biological systems. Although such flow patterns can be, in principle, described by the …

Digital twin: Values, challenges and enablers from a modeling perspective

A Rasheed, O San, T Kvamsdal - IEEE access, 2020 - ieeexplore.ieee.org
Digital twin can be defined as a virtual representation of a physical asset enabled through
data and simulators for real-time prediction, optimization, monitoring, controlling, and …

Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations

M Raissi, P Perdikaris, GE Karniadakis - arxiv preprint arxiv:1711.10561, 2017 - arxiv.org
We introduce physics informed neural networks--neural networks that are trained to solve
supervised learning tasks while respecting any given law of physics described by general …

Explainable machine learning for scientific insights and discoveries

R Roscher, B Bohn, MF Duarte, J Garcke - Ieee Access, 2020 - ieeexplore.ieee.org
Machine learning methods have been remarkably successful for a wide range of application
areas in the extraction of essential information from data. An exciting and relatively recent …