Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Deep learning for 3d point clouds: A survey
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …
Deep learning for lidar point clouds in autonomous driving: A review
Recently, the advancement of deep learning (DL) in discriminative feature learning from 3-D
LiDAR data has led to rapid development in the field of autonomous driving. However …
LiDAR data has led to rapid development in the field of autonomous driving. However …
Mvimgnet: A large-scale dataset of multi-view images
Being data-driven is one of the most iconic properties of deep learning algorithms. The birth
of ImageNet drives a remarkable trend of" learning from large-scale data" in computer vision …
of ImageNet drives a remarkable trend of" learning from large-scale data" in computer vision …
Pointgpt: Auto-regressively generative pre-training from point clouds
Large language models (LLMs) based on the generative pre-training transformer (GPT)
have demonstrated remarkable effectiveness across a diverse range of downstream tasks …
have demonstrated remarkable effectiveness across a diverse range of downstream tasks …
Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d
For the last few decades, several major subfields of artificial intelligence including computer
vision, graphics, and robotics have progressed largely independently from each other …
vision, graphics, and robotics have progressed largely independently from each other …
Contrastive boundary learning for point cloud segmentation
Point cloud segmentation is fundamental in understanding 3D environments. However,
current 3D point cloud segmentation methods usually perform poorly on scene boundaries …
current 3D point cloud segmentation methods usually perform poorly on scene boundaries …
SCF-Net: Learning spatial contextual features for large-scale point cloud segmentation
How to learn effective features from large-scale point clouds for semantic segmentation has
attracted increasing attention in recent years. Addressing this problem, we propose a …
attracted increasing attention in recent years. Addressing this problem, we propose a …
Randla-net: Efficient semantic segmentation of large-scale point clouds
We study the problem of efficient semantic segmentation for large-scale 3D point clouds. By
relying on expensive sampling techniques or computationally heavy pre/post-processing …
relying on expensive sampling techniques or computationally heavy pre/post-processing …
Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion
Given the prominence of current 3D sensors, a fine-grained analysis on the basic point
cloud data is worthy of further investigation. Particularly, real point cloud scenes can …
cloud data is worthy of further investigation. Particularly, real point cloud scenes can …
Growsp: Unsupervised semantic segmentation of 3d point clouds
We study the problem of 3D semantic segmentation from raw point clouds. Unlike existing
methods which primarily rely on a large amount of human annotations for training neural …
methods which primarily rely on a large amount of human annotations for training neural …