A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

[HTML][HTML] A comprehensive survey of image augmentation techniques for deep learning

M Xu, S Yoon, A Fuentes, DS Park - Pattern Recognition, 2023 - Elsevier
Although deep learning has achieved satisfactory performance in computer vision, a large
volume of images is required. However, collecting images is often expensive and …

Joint distribution matters: Deep brownian distance covariance for few-shot classification

J **e, F Long, J Lv, Q Wang… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Few-shot classification is a challenging problem as only very few training examples are
given for each new task. One of the effective research lines to address this challenge …

A survey of data augmentation approaches for NLP

SY Feng, V Gangal, J Wei, S Chandar… - arxiv preprint arxiv …, 2021 - arxiv.org
Data augmentation has recently seen increased interest in NLP due to more work in low-
resource domains, new tasks, and the popularity of large-scale neural networks that require …

A survey on data augmentation for text classification

M Bayer, MA Kaufhold, C Reuter - ACM Computing Surveys, 2022 - dl.acm.org
Data augmentation, the artificial creation of training data for machine learning by
transformations, is a widely studied research field across machine learning disciplines …

Knowledge-guided semantic transfer network for few-shot image recognition

Z Li, H Tang, Z Peng, GJ Qi… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Deep learning-based models have been shown to outperform human beings in many
computer vision tasks with massive available labeled training data in learning. However …

DeepEMD: Few-shot image classification with differentiable earth mover's distance and structured classifiers

C Zhang, Y Cai, G Lin, C Shen - Proceedings of the IEEE …, 2020 - openaccess.thecvf.com
In this paper, we address the few-shot classification task from a new perspective of optimal
matching between image regions. We adopt the Earth Mover's Distance (EMD) as a metric to …

Molo: Motion-augmented long-short contrastive learning for few-shot action recognition

X Wang, S Zhang, Z Qing, C Gao… - Proceedings of the …, 2023 - openaccess.thecvf.com
Current state-of-the-art approaches for few-shot action recognition achieve promising
performance by conducting frame-level matching on learned visual features. However, they …

Free lunch for few-shot learning: Distribution calibration

S Yang, L Liu, M Xu - arxiv preprint arxiv:2101.06395, 2021 - arxiv.org
Learning from a limited number of samples is challenging since the learned model can
easily become overfitted based on the biased distribution formed by only a few training …

Generalizing from a few examples: A survey on few-shot learning

Y Wang, Q Yao, JT Kwok, LM Ni - ACM computing surveys (csur), 2020 - dl.acm.org
Machine learning has been highly successful in data-intensive applications but is often
hampered when the data set is small. Recently, Few-shot Learning (FSL) is proposed to …