Foundations & trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - ACM Computing Surveys, 2024 - dl.acm.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Simple and efficient heterogeneous graph neural network

X Yang, M Yan, S Pan, X Ye, D Fan - … of the AAAI conference on artificial …, 2023 - ojs.aaai.org
Heterogeneous graph neural networks (HGNNs) have the powerful capability to embed rich
structural and semantic information of a heterogeneous graph into node representations …

Graph learning: A survey

F **a, K Sun, S Yu, A Aziz, L Wan… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Graphs are widely used as a popular representation of the network structure of connected
data. Graph data can be found in a broad spectrum of application domains such as social …

Foundations and trends in multimodal machine learning: Principles, challenges, and open questions

PP Liang, A Zadeh, LP Morency - arxiv preprint arxiv:2209.03430, 2022 - arxiv.org
Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design
computer agents with intelligent capabilities such as understanding, reasoning, and learning …

A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation

L Wu, X He, X Wang, K Zhang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Influenced by the great success of deep learning in computer vision and language
understanding, research in recommendation has shifted to inventing new recommender …

Towards graph foundation models: A survey and beyond

J Liu, C Yang, Z Lu, J Chen, Y Li, M Zhang… - arxiv preprint arxiv …, 2023 - arxiv.org
Foundation models have emerged as critical components in a variety of artificial intelligence
applications, and showcase significant success in natural language processing and several …

Learning intents behind interactions with knowledge graph for recommendation

X Wang, T Huang, D Wang, Y Yuan, Z Liu… - Proceedings of the web …, 2021 - dl.acm.org
Knowledge graph (KG) plays an increasingly important role in recommender systems. A
recent technical trend is to develop end-to-end models founded on graph neural networks …

A survey on knowledge graph-based recommender systems

Q Guo, F Zhuang, C Qin, H Zhu, X **e… - … on Knowledge and …, 2020 - ieeexplore.ieee.org
To solve the information explosion problem and enhance user experience in various online
applications, recommender systems have been developed to model users' preferences …