A survey on federated learning for resource-constrained IoT devices

A Imteaj, U Thakker, S Wang, J Li… - IEEE Internet of Things …, 2021 - ieeexplore.ieee.org
Federated learning (FL) is a distributed machine learning strategy that generates a global
model by learning from multiple decentralized edge clients. FL enables on-device training …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Edge learning for B5G networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing

W Xu, Z Yang, DWK Ng, M Levorato… - IEEE journal of …, 2023 - ieeexplore.ieee.org
To process and transfer large amounts of data in emerging wireless services, it has become
increasingly appealing to exploit distributed data communication and learning. Specifically …

[HTML][HTML] Asynchronous federated learning on heterogeneous devices: A survey

C Xu, Y Qu, Y **ang, L Gao - Computer Science Review, 2023 - Elsevier
Federated learning (FL) is a kind of distributed machine learning framework, where the
global model is generated on the centralized aggregation server based on the parameters of …

Federated learning for computationally constrained heterogeneous devices: A survey

K Pfeiffer, M Rapp, R Khalili, J Henkel - ACM Computing Surveys, 2023 - dl.acm.org
With an increasing number of smart devices like internet of things devices deployed in the
field, offloading training of neural networks (NNs) to a central server becomes more and …

Electricity consumer characteristics identification: A federated learning approach

Y Wang, IL Bennani, X Liu, M Sun… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Nowadays, smart meters are deployed in millions of residential households to gain
significant insights from fine-grained electricity consumption data. The information extracted …

A survey on heterogeneous federated learning

D Gao, X Yao, Q Yang - arxiv preprint arxiv:2210.04505, 2022 - arxiv.org
Federated learning (FL) has been proposed to protect data privacy and virtually assemble
the isolated data silos by cooperatively training models among organizations without …

Towards efficient communications in federated learning: A contemporary survey

Z Zhao, Y Mao, Y Liu, L Song, Y Ouyang… - Journal of the Franklin …, 2023 - Elsevier
In the traditional distributed machine learning scenario, the user's private data is transmitted
between clients and a central server, which results in significant potential privacy risks. In …

Split federated learning for 6G enabled-networks: Requirements, challenges, and future directions

H Hafi, B Brik, PA Frangoudis, A Ksentini… - IEEe Access, 2024 - ieeexplore.ieee.org
Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart
services and innovative applications. Such a context urges a heavy usage of Machine …

Semi-synchronous federated learning protocol with dynamic aggregation in internet of vehicles

F Liang, Q Yang, R Liu, J Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In an Internet of Vehicle (IoV) system, federated learning (FL) is a new approach to process
real-time vehicle data in a distributed way, which can improve the driving experience and …