Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Hardware implementation of memristor-based artificial neural networks
Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL)
techniques, which rely on networks of connected simple computing units operating in …
techniques, which rely on networks of connected simple computing units operating in …
Recent advances and future prospects for memristive materials, devices, and systems
Memristive technology has been rapidly emerging as a potential alternative to traditional
CMOS technology, which is facing fundamental limitations in its development. Since oxide …
CMOS technology, which is facing fundamental limitations in its development. Since oxide …
Edge learning using a fully integrated neuro-inspired memristor chip
Learning is highly important for edge intelligence devices to adapt to different application
scenes and owners. Current technologies for training neural networks require moving …
scenes and owners. Current technologies for training neural networks require moving …
A compute-in-memory chip based on resistive random-access memory
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge
devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory …
devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory …
2022 roadmap on neuromorphic computing and engineering
Modern computation based on von Neumann architecture is now a mature cutting-edge
science. In the von Neumann architecture, processing and memory units are implemented …
science. In the von Neumann architecture, processing and memory units are implemented …
Compute-in-memory chips for deep learning: Recent trends and prospects
Compute-in-memory (CIM) is a new computing paradigm that addresses the memory-wall
problem in hardware accelerator design for deep learning. The input vector and weight …
problem in hardware accelerator design for deep learning. The input vector and weight …
Physics for neuromorphic computing
Neuromorphic computing takes inspiration from the brain to create energy-efficient hardware
for information processing, capable of highly sophisticated tasks. Systems built with standard …
for information processing, capable of highly sophisticated tasks. Systems built with standard …
A computing-in-memory macro based on three-dimensional resistive random-access memory
Q Huo, Y Yang, Y Wang, D Lei, X Fu, Q Ren, X Xu… - Nature …, 2022 - nature.com
Non-volatile computing-in-memory macros that are based on two-dimensional arrays of
memristors are of use in the development of artificial intelligence edge devices. Scaling such …
memristors are of use in the development of artificial intelligence edge devices. Scaling such …
Prospects and applications of photonic neural networks
Neural networks have enabled applications in artificial intelligence through machine
learning, and neuromorphic computing. Software implementations of neural networks on …
learning, and neuromorphic computing. Software implementations of neural networks on …
Memristor-based hardware accelerators for artificial intelligence
Satisfying the rapid evolution of artificial intelligence (AI) algorithms requires exponential
growth in computing resources, which, in turn, presents huge challenges for deploying AI …
growth in computing resources, which, in turn, presents huge challenges for deploying AI …