Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions

MM Taye - Computation, 2023 - mdpi.com
Convolutional neural networks (CNNs) are one of the main types of neural networks used for
image recognition and classification. CNNs have several uses, some of which are object …

Semantic communications for future internet: Fundamentals, applications, and challenges

W Yang, H Du, ZQ Liew, WYB Lim… - … Surveys & Tutorials, 2022 - ieeexplore.ieee.org
With the increasing demand for intelligent services, the sixth-generation (6G) wireless
networks will shift from a traditional architecture that focuses solely on a high transmission …

A review of convolutional neural network architectures and their optimizations

S Cong, Y Zhou - Artificial Intelligence Review, 2023 - Springer
The research advances concerning the typical architectures of convolutional neural
networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this …

State of the art in defect detection based on machine vision

Z Ren, F Fang, N Yan, Y Wu - International Journal of Precision …, 2022 - Springer
Abstract Machine vision significantly improves the efficiency, quality, and reliability of defect
detection. In visual inspection, excellent optical illumination platforms and suitable image …

Pruning and quantization for deep neural network acceleration: A survey

T Liang, J Glossner, L Wang, S Shi, X Zhang - Neurocomputing, 2021 - Elsevier
Deep neural networks have been applied in many applications exhibiting extraordinary
abilities in the field of computer vision. However, complex network architectures challenge …

Artificial intelligence and machine learning in design of mechanical materials

K Guo, Z Yang, CH Yu, MJ Buehler - Materials Horizons, 2021 - pubs.rsc.org
Artificial intelligence, especially machine learning (ML) and deep learning (DL) algorithms,
is becoming an important tool in the fields of materials and mechanical engineering …

A survey of the recent architectures of deep convolutional neural networks

A Khan, A Sohail, U Zahoora, AS Qureshi - Artificial intelligence review, 2020 - Springer
Abstract Deep Convolutional Neural Network (CNN) is a special type of Neural Networks,
which has shown exemplary performance on several competitions related to Computer …

A federated learning-based approach for improving intrusion detection in industrial internet of things networks

MM Rashid, SU Khan, F Eusufzai, MA Redwan… - Network, 2023 - mdpi.com
The Internet of Things (IoT) is a network of electrical devices that are connected to the
Internet wirelessly. This group of devices generates a large amount of data with information …

[HTML][HTML] A survey of CNN-based network intrusion detection

L Mohammadpour, TC Ling, CS Liew, A Aryanfar - Applied Sciences, 2022 - mdpi.com
Over the past few years, Internet applications have become more advanced and widely
used. This has increased the need for Internet networks to be secured. Intrusion detection …

Insights and reviews on battery lifetime prediction from research to practice

X Qu, D Shi, J Zhao, MK Tran, Z Wang, M Fowler… - Journal of Energy …, 2024 - Elsevier
The rising demand for energy storage solutions, especially in the electric vehicle and
renewable energy sectors, highlights the importance of accurately predicting battery health …