A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Representations of materials for machine learning

J Damewood, J Karaguesian, JR Lunger… - Annual Review of …, 2023 - annualreviews.org
High-throughput data generation methods and machine learning (ML) algorithms have
given rise to a new era of computational materials science by learning the relations between …

Scaling deep learning for materials discovery

A Merchant, S Batzner, SS Schoenholz, M Aykol… - Nature, 2023 - nature.com
Novel functional materials enable fundamental breakthroughs across technological
applications from clean energy to information processing,,,,,,,,,–. From microchips to batteries …

CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling

B Deng, P Zhong, KJ Jun, J Riebesell, K Han… - Nature Machine …, 2023 - nature.com
Large-scale simulations with complex electron interactions remain one of the greatest
challenges for atomistic modelling. Although classical force fields often fail to describe the …

Diffdock: Diffusion steps, twists, and turns for molecular docking

G Corso, H Stärk, B **g, R Barzilay… - arxiv preprint arxiv …, 2022 - arxiv.org
Predicting the binding structure of a small molecule ligand to a protein--a task known as
molecular docking--is critical to drug design. Recent deep learning methods that treat …

Learning local equivariant representations for large-scale atomistic dynamics

A Musaelian, S Batzner, A Johansson, L Sun… - Nature …, 2023 - nature.com
A simultaneously accurate and computationally efficient parametrization of the potential
energy surface of molecules and materials is a long-standing goal in the natural sciences …

Periodic graph transformers for crystal material property prediction

K Yan, Y Liu, Y Lin, S Ji - Advances in Neural Information …, 2022 - proceedings.neurips.cc
We consider representation learning on periodic graphs encoding crystal materials. Different
from regular graphs, periodic graphs consist of a minimum unit cell repeating itself on a …

Theory for equivariant quantum neural networks

QT Nguyen, L Schatzki, P Braccia, M Ragone, PJ Coles… - PRX Quantum, 2024 - APS
Quantum neural network architectures that have little to no inductive biases are known to
face trainability and generalization issues. Inspired by a similar problem, recent …

Reducing SO (3) convolutions to SO (2) for efficient equivariant GNNs

S Passaro, CL Zitnick - International Conference on Machine …, 2023 - proceedings.mlr.press
Graph neural networks that model 3D data, such as point clouds or atoms, are typically
desired to be $ SO (3) $ equivariant, ie, equivariant to 3D rotations. Unfortunately …

[HTML][HTML] Evaluation of the MACE force field architecture: From medicinal chemistry to materials science

DP Kovács, I Batatia, ES Arany… - The Journal of Chemical …, 2023 - pubs.aip.org
The MACE architecture represents the state of the art in the field of machine learning force
fields for a variety of in-domain, extrapolation, and low-data regime tasks. In this paper, we …