Reinforcement learning for logistics and supply chain management: Methodologies, state of the art, and future opportunities

Y Yan, AHF Chow, CP Ho, YH Kuo, Q Wu… - … Research Part E …, 2022 - Elsevier
With advances in technologies, data science techniques, and computing equipment, there
has been rapidly increasing interest in the applications of reinforcement learning (RL) to …

Evolutionary dynamics of multi-agent learning: A survey

D Bloembergen, K Tuyls, D Hennes… - Journal of Artificial …, 2015 - jair.org
The interaction of multiple autonomous agents gives rise to highly dynamic and
nondeterministic environments, contributing to the complexity in applications such as …

Multi-agent deep reinforcement learning: a survey

S Gronauer, K Diepold - Artificial Intelligence Review, 2022 - Springer
The advances in reinforcement learning have recorded sublime success in various domains.
Although the multi-agent domain has been overshadowed by its single-agent counterpart …

Multi-agent deep reinforcement learning for large-scale traffic signal control

T Chu, J Wang, L Codecà, Z Li - IEEE transactions on intelligent …, 2019 - ieeexplore.ieee.org
Reinforcement learning (RL) is a promising data-driven approach for adaptive traffic signal
control (ATSC) in complex urban traffic networks, and deep neural networks further enhance …

Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks

N Zhao, YC Liang, D Niyato, Y Pei… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Heterogeneous cellular networks can offload the mobile traffic and reduce the deployment
costs, which have been considered to be a promising technique in the next-generation …

Spectrum sharing in vehicular networks based on multi-agent reinforcement learning

L Liang, H Ye, GY Li - IEEE Journal on Selected Areas in …, 2019 - ieeexplore.ieee.org
This paper investigates the spectrum sharing problem in vehicular networks based on multi-
agent reinforcement learning, where multiple vehicle-to-vehicle (V2V) links reuse the …

A survey and critique of multiagent deep reinforcement learning

P Hernandez-Leal, B Kartal, ME Taylor - Autonomous Agents and Multi …, 2019 - Springer
Deep reinforcement learning (RL) has achieved outstanding results in recent years. This has
led to a dramatic increase in the number of applications and methods. Recent works have …

Multi-agent actor-critic for mixed cooperative-competitive environments

R Lowe, YI Wu, A Tamar, J Harb… - Advances in neural …, 2017 - proceedings.neurips.cc
We explore deep reinforcement learning methods for multi-agent domains. We begin by
analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is …

Cooperative multi-agent control using deep reinforcement learning

JK Gupta, M Egorov, M Kochenderfer - … Best Papers, São Paulo, Brazil, May …, 2017 - Springer
This work considers the problem of learning cooperative policies in complex, partially
observable domains without explicit communication. We extend three classes of single …

Stabilising experience replay for deep multi-agent reinforcement learning

J Foerster, N Nardelli, G Farquhar… - International …, 2017 - proceedings.mlr.press
Many real-world problems, such as network packet routing and urban traffic control, are
naturally modeled as multi-agent reinforcement learning (RL) problems. However, existing …