A survey on self-supervised learning: Algorithms, applications, and future trends

J Gui, T Chen, J Zhang, Q Cao, Z Sun… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep supervised learning algorithms typically require a large volume of labeled data to
achieve satisfactory performance. However, the process of collecting and labeling such data …

A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities

Y Song, T Wang, P Cai, SK Mondal… - ACM Computing Surveys, 2023 - dl.acm.org
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …

Learn from others and be yourself in heterogeneous federated learning

W Huang, M Ye, B Du - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Federated learning has emerged as an important distributed learning paradigm, which
normally involves collaborative updating with others and local updating on private data …

Masked feature prediction for self-supervised visual pre-training

C Wei, H Fan, S **e, CY Wu, A Yuille… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract We present Masked Feature Prediction (MaskFeat) for self-supervised pre-training
of video models. Our approach first randomly masks out a portion of the input sequence and …

Fedfed: Feature distillation against data heterogeneity in federated learning

Z Yang, Y Zhang, Y Zheng, X Tian… - Advances in …, 2023 - proceedings.neurips.cc
Federated learning (FL) typically faces data heterogeneity, ie, distribution shifting among
clients. Sharing clients' information has shown great potentiality in mitigating data …

Styleswin: Transformer-based gan for high-resolution image generation

B Zhang, S Gu, B Zhang, J Bao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Despite the tantalizing success in a broad of vision tasks, transformers have not yet
demonstrated on-par ability as ConvNets in high-resolution image generative modeling. In …

No fear of heterogeneity: Classifier calibration for federated learning with non-iid data

M Luo, F Chen, D Hu, Y Zhang… - Advances in Neural …, 2021 - proceedings.neurips.cc
A central challenge in training classification models in the real-world federated system is
learning with non-IID data. To cope with this, most of the existing works involve enforcing …

Dense contrastive learning for self-supervised visual pre-training

X Wang, R Zhang, C Shen… - Proceedings of the …, 2021 - openaccess.thecvf.com
To date, most existing self-supervised learning methods are designed and optimized for
image classification. These pre-trained models can be sub-optimal for dense prediction …

Contrastive representation learning: A framework and review

PH Le-Khac, G Healy, AF Smeaton - Ieee Access, 2020 - ieeexplore.ieee.org
Contrastive Learning has recently received interest due to its success in self-supervised
representation learning in the computer vision domain. However, the origins of Contrastive …

Hard negative mixing for contrastive learning

Y Kalantidis, MB Sariyildiz, N Pion… - Advances in neural …, 2020 - proceedings.neurips.cc
Contrastive learning has become a key component of self-supervised learning approaches
for computer vision. By learning to embed two augmented versions of the same image close …