A survey on 3d skeleton-based action recognition using learning method

B Ren, M Liu, R Ding, H Liu - Cyborg and Bionic Systems, 2024 - spj.science.org
Three-dimensional skeleton-based action recognition (3D SAR) has gained important
attention within the computer vision community, owing to the inherent advantages offered by …

Infogcn: Representation learning for human skeleton-based action recognition

H Chi, MH Ha, S Chi, SW Lee… - Proceedings of the …, 2022 - openaccess.thecvf.com
Human skeleton-based action recognition offers a valuable means to understand the
intricacies of human behavior because it can handle the complex relationships between …

Star-transformer: a spatio-temporal cross attention transformer for human action recognition

D Ahn, S Kim, H Hong, BC Ko - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In action recognition, although the combination of spatio-temporal videos and skeleton
features can improve the recognition performance, a separate model and balancing feature …

Action transformer: A self-attention model for short-time pose-based human action recognition

V Mazzia, S Angarano, F Salvetti, F Angelini… - Pattern Recognition, 2022 - Elsevier
Deep neural networks based purely on attention have been successful across several
domains, relying on minimal architectural priors from the designer. In Human Action …

Deep learning for human activity recognition on 3d human skeleton: survey and comparative study

HC Nguyen, TH Nguyen, R Scherer, VH Le - Sensors, 2023 - mdpi.com
Human activity recognition (HAR) is an important research problem in computer vision. This
problem is widely applied to building applications in human–machine interactions …

Masked motion predictors are strong 3d action representation learners

Y Mao, J Deng, W Zhou, Y Fang… - Proceedings of the …, 2023 - openaccess.thecvf.com
In 3D human action recognition, limited supervised data makes it challenging to fully tap into
the modeling potential of powerful networks such as transformers. As a result, researchers …

Video transformers: A survey

J Selva, AS Johansen, S Escalera… - … on Pattern Analysis …, 2023 - ieeexplore.ieee.org
Transformer models have shown great success handling long-range interactions, making
them a promising tool for modeling video. However, they lack inductive biases and scale …

Temporal decoupling graph convolutional network for skeleton-based gesture recognition

J Liu, X Wang, C Wang, Y Gao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Skeleton-based gesture recognition methods have achieved high success using Graph
Convolutional Network (GCN), which commonly uses an adjacency matrix to model the …

3mformer: Multi-order multi-mode transformer for skeletal action recognition

L Wang, P Koniusz - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Many skeletal action recognition models use GCNs to represent the human body by 3D
body joints connected body parts. GCNs aggregate one-or few-hop graph neighbourhoods …

Relation-mining self-attention network for skeleton-based human action recognition

K Gedamu, Y Ji, LL Gao, Y Yang, HT Shen - Pattern Recognition, 2023 - Elsevier
Modeling spatiotemporal global dependencies and dynamics of body joints are crucial to
recognizing actions from 3D skeleton sequences. We propose a Relation-mining Self …