A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …

Differentiable modelling to unify machine learning and physical models for geosciences

C Shen, AP Appling, P Gentine, T Bandai… - Nature Reviews Earth & …, 2023 - nature.com
Process-based modelling offers interpretability and physical consistency in many domains of
geosciences but struggles to leverage large datasets efficiently. Machine-learning methods …

Camouflaged object detection with feature decomposition and edge reconstruction

C He, K Li, Y Zhang, L Tang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Camouflaged object detection (COD) aims to address the tough issue of identifying
camouflaged objects visually blended into the surrounding backgrounds. COD is a …

Neural operator: Learning maps between function spaces with applications to pdes

N Kovachki, Z Li, B Liu, K Azizzadenesheli… - Journal of Machine …, 2023 - jmlr.org
The classical development of neural networks has primarily focused on learning map**s
between finite dimensional Euclidean spaces or finite sets. We propose a generalization of …

On neural differential equations

P Kidger - arxiv preprint arxiv:2202.02435, 2022 - arxiv.org
The conjoining of dynamical systems and deep learning has become a topic of great
interest. In particular, neural differential equations (NDEs) demonstrate that neural networks …

A survey on neural network interpretability

Y Zhang, P Tiňo, A Leonardis… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Along with the great success of deep neural networks, there is also growing concern about
their black-box nature. The interpretability issue affects people's trust on deep learning …

A survey on deep learning for human activity recognition

F Gu, MH Chung, M Chignell, S Valaee… - ACM Computing …, 2021 - dl.acm.org
Human activity recognition is a key to a lot of applications such as healthcare and smart
home. In this study, we provide a comprehensive survey on recent advances and challenges …

Deep learning in ECG diagnosis: A review

X Liu, H Wang, Z Li, L Qin - Knowledge-Based Systems, 2021 - Elsevier
Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels
abnormality that serves as a global leading reason for death. The earlier the abnormal heart …

Deep equilibrium models

S Bai, JZ Kolter, V Koltun - Advances in neural information …, 2019 - proceedings.neurips.cc
We present a new approach to modeling sequential data: the deep equilibrium model
(DEQ). Motivated by an observation that the hidden layers of many existing deep sequence …

KAN-ODEs: Kolmogorov–Arnold network ordinary differential equations for learning dynamical systems and hidden physics

BC Koenig, S Kim, S Deng - Computer Methods in Applied Mechanics and …, 2024 - Elsevier
Abstract Kolmogorov–Arnold networks (KANs) as an alternative to multi-layer perceptrons
(MLPs) are a recent development demonstrating strong potential for data-driven modeling …