A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2024 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

Principles and practice of explainable machine learning

V Belle, I Papantonis - Frontiers in big Data, 2021 - frontiersin.org
Artificial intelligence (AI) provides many opportunities to improve private and public life.
Discovering patterns and structures in large troves of data in an automated manner is a core …

Knowledge distillation: A survey

J Gou, B Yu, SJ Maybank, D Tao - International Journal of Computer Vision, 2021 - Springer
In recent years, deep neural networks have been successful in both industry and academia,
especially for computer vision tasks. The great success of deep learning is mainly due to its …

Data-free knowledge distillation for heterogeneous federated learning

Z Zhu, J Hong, J Zhou - International conference on machine …, 2021 - proceedings.mlr.press
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global
server iteratively averages the model parameters of local users without accessing their data …

Knowledge distillation and student-teacher learning for visual intelligence: A review and new outlooks

L Wang, KJ Yoon - IEEE transactions on pattern analysis and …, 2021 - ieeexplore.ieee.org
Deep neural models, in recent years, have been successful in almost every field, even
solving the most complex problem statements. However, these models are huge in size with …

Knowledge distillation with the reused teacher classifier

D Chen, JP Mei, H Zhang, C Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Knowledge distillation aims to compress a powerful yet cumbersome teacher model
into a lightweight student model without much sacrifice of performance. For this purpose …

Source-free domain adaptation for semantic segmentation

Y Liu, W Zhang, J Wang - … of the IEEE/CVF Conference on …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation (UDA) can tackle the challenge that
convolutional neural network (CNN)-based approaches for semantic segmentation heavily …