A comprehensive survey on test-time adaptation under distribution shifts

J Liang, R He, T Tan - International Journal of Computer Vision, 2025 - Springer
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …

A comprehensive survey on source-free domain adaptation

J Li, Z Yu, Z Du, L Zhu, HT Shen - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
Over the past decade, domain adaptation has become a widely studied branch of transfer
learning which aims to improve performance on target domains by leveraging knowledge …

Data-free knowledge distillation for heterogeneous federated learning

Z Zhu, J Hong, J Zhou - International conference on machine …, 2021 - proceedings.mlr.press
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global
server iteratively averages the model parameters of local users without accessing their data …

Knowledge distillation with the reused teacher classifier

D Chen, JP Mei, H Zhang, C Wang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract Knowledge distillation aims to compress a powerful yet cumbersome teacher model
into a lightweight student model without much sacrifice of performance. For this purpose …

Principles and practice of explainable machine learning

V Belle, I Papantonis - Frontiers in big Data, 2021 - frontiersin.org
Artificial intelligence (AI) provides many opportunities to improve private and public life.
Discovering patterns and structures in large troves of data in an automated manner is a core …

Source-free domain adaptation for semantic segmentation

Y Liu, W Zhang, J Wang - … of the IEEE/CVF conference on …, 2021 - openaccess.thecvf.com
Abstract Unsupervised Domain Adaptation (UDA) can tackle the challenge that
convolutional neural network (CNN)-based approaches for semantic segmentation heavily …