Auto-encoders in deep learning—a review with new perspectives

S Chen, W Guo - Mathematics, 2023 - mdpi.com
Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure …

A unifying review of deep and shallow anomaly detection

L Ruff, JR Kauffmann, RA Vandermeulen… - Proceedings of the …, 2021 - ieeexplore.ieee.org
Deep learning approaches to anomaly detection (AD) have recently improved the state of
the art in detection performance on complex data sets, such as large collections of images or …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

Towards total recall in industrial anomaly detection

K Roth, L Pemula, J Zepeda… - Proceedings of the …, 2022 - openaccess.thecvf.com
Being able to spot defective parts is a critical component in large-scale industrial
manufacturing. A particular challenge that we address in this work is the cold-start problem …

Video event restoration based on keyframes for video anomaly detection

Z Yang, J Liu, Z Wu, P Wu, X Liu - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
Video anomaly detection (VAD) is a significant computer vision problem. Existing deep
neural network (DNN) based VAD methods mostly follow the route of frame reconstruction or …

Cutpaste: Self-supervised learning for anomaly detection and localization

CL Li, K Sohn, J Yoon, T Pfister - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
We aim at constructing a high performance model for defect detection that detects unknown
anomalous patterns of an image without anomalous data. To this end, we propose a two …

Fully convolutional cross-scale-flows for image-based defect detection

M Rudolph, T Wehrbein… - Proceedings of the …, 2022 - openaccess.thecvf.com
In industrial manufacturing processes, errors frequently occur at unpredictable times and in
unknown manifestations. We tackle this problem, known as automatic defect detection …

Multiresolution knowledge distillation for anomaly detection

M Salehi, N Sadjadi, S Baselizadeh… - Proceedings of the …, 2021 - openaccess.thecvf.com
Unsupervised representation learning has proved to be a critical component of anomaly
detection/localization in images. The challenges to learn such a representation are two-fold …

Csi: Novelty detection via contrastive learning on distributionally shifted instances

J Tack, S Mo, J Jeong, J Shin - Advances in neural …, 2020 - proceedings.neurips.cc
Novelty detection, ie, identifying whether a given sample is drawn from outside the training
distribution, is essential for reliable machine learning. To this end, there have been many …

Learning memory-guided normality for anomaly detection

H Park, J Noh, B Ham - … of the IEEE/CVF conference on …, 2020 - openaccess.thecvf.com
We address the problem of anomaly detection, that is, detecting anomalous events in a
video sequence. Anomaly detection methods based on convolutional neural networks …