Large sequence models for sequential decision-making: a survey
Transformer architectures have facilitated the development of large-scale and general-
purpose sequence models for prediction tasks in natural language processing and computer …
purpose sequence models for prediction tasks in natural language processing and computer …
Large language models as general pattern machines
We observe that pre-trained large language models (LLMs) are capable of autoregressively
completing complex token sequences--from arbitrary ones procedurally generated by …
completing complex token sequences--from arbitrary ones procedurally generated by …
Supervised pretraining can learn in-context reinforcement learning
Large transformer models trained on diverse datasets have shown a remarkable ability to
learn in-context, achieving high few-shot performance on tasks they were not explicitly …
learn in-context, achieving high few-shot performance on tasks they were not explicitly …
On Transforming Reinforcement Learning With Transformers: The Development Trajectory
Transformers, originally devised for natural language processing (NLP), have also produced
significant successes in computer vision (CV). Due to their strong expression power …
significant successes in computer vision (CV). Due to their strong expression power …
Diffusion model is an effective planner and data synthesizer for multi-task reinforcement learning
Diffusion models have demonstrated highly-expressive generative capabilities in vision and
NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are …
NLP. Recent studies in reinforcement learning (RL) have shown that diffusion models are …
In-context reinforcement learning with algorithm distillation
We propose Algorithm Distillation (AD), a method for distilling reinforcement learning (RL)
algorithms into neural networks by modeling their training histories with a causal sequence …
algorithms into neural networks by modeling their training histories with a causal sequence …
Elastic decision transformer
Abstract This paper introduces Elastic Decision Transformer (EDT), a significant
advancement over the existing Decision Transformer (DT) and its variants. Although DT …
advancement over the existing Decision Transformer (DT) and its variants. Although DT …
Constrained decision transformer for offline safe reinforcement learning
Safe reinforcement learning (RL) trains a constraint satisfaction policy by interacting with the
environment. We aim to tackle a more challenging problem: learning a safe policy from an …
environment. We aim to tackle a more challenging problem: learning a safe policy from an …
Skill transformer: A monolithic policy for mobile manipulation
Abstract We present Skill Transformer, an approach for solving long-horizon robotic tasks by
combining conditional sequence modeling and skill modularity. Conditioned on egocentric …
combining conditional sequence modeling and skill modularity. Conditioned on egocentric …
Ceil: Generalized contextual imitation learning
In this paper, we present ContExtual Imitation Learning (CEIL), a general and broadly
applicable algorithm for imitation learning (IL). Inspired by the formulation of hindsight …
applicable algorithm for imitation learning (IL). Inspired by the formulation of hindsight …