The future of two-dimensional semiconductors beyond Moore's law
The primary challenge facing silicon-based electronics, crucial for modern technological
progress, is difficulty in dimensional scaling. This stems from a severe deterioration of …
progress, is difficulty in dimensional scaling. This stems from a severe deterioration of …
Transistors based on two-dimensional materials for future integrated circuits
Field-effect transistors based on two-dimensional (2D) materials have the potential to be
used in very large-scale integration (VLSI) technology, but whether they can be used at the …
used in very large-scale integration (VLSI) technology, but whether they can be used at the …
The future transistors
The metal–oxide–semiconductor field-effect transistor (MOSFET), a core element of
complementary metal–oxide–semiconductor (CMOS) technology, represents one of the …
complementary metal–oxide–semiconductor (CMOS) technology, represents one of the …
Ultralow contact resistance between semimetal and monolayer semiconductors
Advanced beyond-silicon electronic technology requires both channel materials and also
ultralow-resistance contacts to be discovered,. Atomically thin two-dimensional …
ultralow-resistance contacts to be discovered,. Atomically thin two-dimensional …
Promises and prospects of two-dimensional transistors
Abstract Two-dimensional (2D) semiconductors have attracted tremendous interest as
atomically thin channels that could facilitate continued transistor scaling. However, despite …
atomically thin channels that could facilitate continued transistor scaling. However, despite …
2D materials in flexible electronics: recent advances and future prospectives
Flexible electronics have recently gained considerable attention due to their potential to
provide new and innovative solutions to a wide range of challenges in various electronic …
provide new and innovative solutions to a wide range of challenges in various electronic …
Bandgap engineering of two-dimensional semiconductor materials
Semiconductors are the basis of many vital technologies such as electronics, computing,
communications, optoelectronics, and sensing. Modern semiconductor technology can trace …
communications, optoelectronics, and sensing. Modern semiconductor technology can trace …
Benchmarking monolayer MoS2 and WS2 field-effect transistors
Here we benchmark device-to-device variation in field-effect transistors (FETs) based on
monolayer MoS2 and WS2 films grown using metal-organic chemical vapor deposition …
monolayer MoS2 and WS2 films grown using metal-organic chemical vapor deposition …
Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities
Atomic defects, being the most prevalent zero-dimensional topological defects, are
ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be …
ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be …
Fermi level pinning dependent 2D semiconductor devices: challenges and prospects
Motivated by the high expectation for efficient electrostatic modulation of charge transport at
very low voltages, atomically thin 2D materials with a range of bandgaps are investigated …
very low voltages, atomically thin 2D materials with a range of bandgaps are investigated …