Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Reinforcement learning algorithms: A brief survey
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …
Explainable reinforcement learning: A survey and comparative review
Explainable reinforcement learning (XRL) is an emerging subfield of explainable machine
learning that has attracted considerable attention in recent years. The goal of XRL is to …
learning that has attracted considerable attention in recent years. The goal of XRL is to …
Diffusion policy: Visuomotor policy learning via action diffusion
This paper introduces Diffusion Policy, a new way of generating robot behavior by
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …
Affordances from human videos as a versatile representation for robotics
Building a robot that can understand and learn to interact by watching humans has inspired
several vision problems. However, despite some successful results on static datasets, it …
several vision problems. However, despite some successful results on static datasets, it …
Video pretraining (vpt): Learning to act by watching unlabeled online videos
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …
training models with broad, general capabilities for text, images, and other modalities …
Behavior Transformers: Cloning modes with one stone
While behavior learning has made impressive progress in recent times, it lags behind
computer vision and natural language processing due to its inability to leverage large …
computer vision and natural language processing due to its inability to leverage large …
Bc-z: Zero-shot task generalization with robotic imitation learning
In this paper, we study the problem of enabling a vision-based robotic manipulation system
to generalize to novel tasks, a long-standing challenge in robot learning. We approach the …
to generalize to novel tasks, a long-standing challenge in robot learning. We approach the …
Mimicplay: Long-horizon imitation learning by watching human play
Imitation learning from human demonstrations is a promising paradigm for teaching robots
manipulation skills in the real world. However, learning complex long-horizon tasks often …
manipulation skills in the real world. However, learning complex long-horizon tasks often …
[HTML][HTML] A review on reinforcement learning for contact-rich robotic manipulation tasks
Research and application of reinforcement learning in robotics for contact-rich manipulation
tasks have exploded in recent years. Its ability to cope with unstructured environments and …
tasks have exploded in recent years. Its ability to cope with unstructured environments and …
Goal-conditioned imitation learning using score-based diffusion policies
We propose a new policy representation based on score-based diffusion models (SDMs).
We apply our new policy representation in the domain of Goal-Conditioned Imitation …
We apply our new policy representation in the domain of Goal-Conditioned Imitation …