Reinforcement learning algorithms: A brief survey

AK Shakya, G Pillai, S Chakrabarty - Expert Systems with Applications, 2023 - Elsevier
Reinforcement Learning (RL) is a machine learning (ML) technique to learn sequential
decision-making in complex problems. RL is inspired by trial-and-error based human/animal …

Explainable reinforcement learning: A survey and comparative review

S Milani, N Topin, M Veloso, F Fang - ACM Computing Surveys, 2024 - dl.acm.org
Explainable reinforcement learning (XRL) is an emerging subfield of explainable machine
learning that has attracted considerable attention in recent years. The goal of XRL is to …

Diffusion policy: Visuomotor policy learning via action diffusion

C Chi, Z Xu, S Feng, E Cousineau… - … Journal of Robotics …, 2023 - journals.sagepub.com
This paper introduces Diffusion Policy, a new way of generating robot behavior by
representing a robot's visuomotor policy as a conditional denoising diffusion process. We …

Affordances from human videos as a versatile representation for robotics

S Bahl, R Mendonca, L Chen… - Proceedings of the …, 2023 - openaccess.thecvf.com
Building a robot that can understand and learn to interact by watching humans has inspired
several vision problems. However, despite some successful results on static datasets, it …

Video pretraining (vpt): Learning to act by watching unlabeled online videos

B Baker, I Akkaya, P Zhokov… - Advances in …, 2022 - proceedings.neurips.cc
Pretraining on noisy, internet-scale datasets has been heavily studied as a technique for
training models with broad, general capabilities for text, images, and other modalities …

Behavior Transformers: Cloning modes with one stone

NM Shafiullah, Z Cui… - Advances in neural …, 2022 - proceedings.neurips.cc
While behavior learning has made impressive progress in recent times, it lags behind
computer vision and natural language processing due to its inability to leverage large …

Bc-z: Zero-shot task generalization with robotic imitation learning

E Jang, A Irpan, M Khansari… - … on Robot Learning, 2022 - proceedings.mlr.press
In this paper, we study the problem of enabling a vision-based robotic manipulation system
to generalize to novel tasks, a long-standing challenge in robot learning. We approach the …

Mimicplay: Long-horizon imitation learning by watching human play

C Wang, L Fan, J Sun, R Zhang, L Fei-Fei, D Xu… - arxiv preprint arxiv …, 2023 - arxiv.org
Imitation learning from human demonstrations is a promising paradigm for teaching robots
manipulation skills in the real world. However, learning complex long-horizon tasks often …

[HTML][HTML] A review on reinforcement learning for contact-rich robotic manipulation tasks

Í Elguea-Aguinaco, A Serrano-Muñoz… - Robotics and Computer …, 2023 - Elsevier
Research and application of reinforcement learning in robotics for contact-rich manipulation
tasks have exploded in recent years. Its ability to cope with unstructured environments and …

Goal-conditioned imitation learning using score-based diffusion policies

M Reuss, M Li, X Jia, R Lioutikov - arxiv preprint arxiv:2304.02532, 2023 - arxiv.org
We propose a new policy representation based on score-based diffusion models (SDMs).
We apply our new policy representation in the domain of Goal-Conditioned Imitation …